• Title/Summary/Keyword: repeated loads

Search Result 173, Processing Time 0.024 seconds

A Study on Fracture Mechanism of Torsion-Mounted Type Turbine Blade (비틀림 마운트형 터빈 블레이드의 파괴기구에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Jang, Deuk-Yul;Cho, Seoks-Woo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.585-590
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

A Study on Failure Analysis of Turbine Blade Using Surface Roughness and FEM (표면거칠기와 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;이선봉;조석수;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.170-177
    • /
    • 2001
  • Turbine blade is subject to torsional load by torsion-mount, centrifugal load by rotation of rotor and repeated bending load by steam pressure. Turbine with partially cracked blade has normal working condition at initial repair time but vibratory working condition at middle repair time due to crack growth. Finite element analysis on turbine blade indicates that repeated bending load out of all loads is the most important factor on fatigue strength of turbine blade. Therefore, this study shows root mean square roughness has linear relation with stress intensity factor range in 12% Cr steel and can predict loading condition of fractured turbine blade.

  • PDF

Investigating the negative tension stiffening effect of reinforced concrete

  • Zanuy, Carlos
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.189-211
    • /
    • 2010
  • The behaviour of a reinforced concrete tension member is governed by the contribution of concrete between cracks, tension stiffening effect. Under highly repeated loading, this contribution is progressively reduced and the member response approximates that given by the fully cracked member. When focusing on the unloaded state, experiments show deformations larger than those of the naked reinforcement. This has been referred to as negative tension stiffening and is due to the fact that concrete carries compressive stresses along the crack spacing, even thought the tie is subjected to an external tensile force. In this paper a cycle-dependent approach is presented to reproduce the behaviour of the axially loaded tension member, paying attention to the negative tension stiffening contribution. The interaction of cyclic bond degradation and time-dependent effects of concrete is investigated. Finally, some practical diagrams are given to account for the negative tension stiffening effect in reinforced concrete elements.

Calculation of Active Power Transfer Capability using Repeated Power Flow Program

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.15-19
    • /
    • 2002
  • The power transfer capability is determined by the thermal, dynamic stability and voltage limits of the generation and transmission systems. The voltage stability depends on the reactive power limit and it affects the power transfer capability to a great extent. Then, in most load flow analysis, the reactive power limit is assumed as fixed, relatively different from the actual case. This paper proposes a method for determining the power transfer capability from a static voltage stability point of view using the IPLAN which is a high level language used with PSS/E program. The f-V curve for determining the power transfer capability is determined using Repeated Power Flow method. It Is assumed that the loads are constant and the generation powers change according to the merit order. The maximum reactive power limits are considered as varying similarly with the actual case and the effects of the varied maximum reactive power limits to the maximum power transfer capability are analyzed using a 5-bus power system and a 19-bus practical power system.

Analysis of Dynamic Responses for Steel Box Girder and I-girder Bridges under Train Loads (강합성 상자형교 및 소수주형 I형 거더교의 철도차량에 대한 동특성 해석)

  • Choi, Dong-Ho;Na, Ho-Sung;Ahn, Gi-Chul;Kim, Ok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.954-959
    • /
    • 2011
  • The intensity of train load in the railway bridges is relatively large and continues to repeat. Also, the speed of vehicles is very fast. For these reasons, analyses for dynamic response under train load are necessary in the railway bridges. In other words, the dynamic characteristics of steel-composite bridges under train loads should be investigated considering effects of dynamic responses such as vibrations, repeated displacements and acceleration of bridge members. Therefore, in this study, static and dynamic analyses for the steel box girder bridges and I-girder bridges are carried out. Based on analyses results, we investigated and compared dynamic response considering the impact factors of domestic and foreign design specifications.

  • PDF

Experimental Study for Higher Seismic Performance of Confined Masonry Wall System (주변이 RC로 구속된 조적조 벽체의 내진성능향상에 관한 실험적 연구)

  • Kim Kyong-Tae;Seo Soo-Yeon;Yoon Seung-Joe;Yoshimura Koji;Sung Ki-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.5-8
    • /
    • 2004
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of four one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The constant vertical axial stresses applied are 0, 0.84 and 1.80MPa, while the amount of reinforcements in horizontal and vertical directions are $0\%,\;0.08\%\;and\;0.18\%$ respectively. Test results obtained for each specimen include cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

A Study on Wear Life and Mechanisms of TiN Coated Bearing Balls against Steel Disks (TiN 박막 처리될 베어링 볼의 마모 수명 및 메커니즘에 관한 연구)

  • 한지훈;조정우;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.378-384
    • /
    • 2000
  • This paper presents the results of the repeated sliding tests to determine the wear-life of TiN coated AISI 52100 bearing balls deposited by PVD method and to show the wear mechanisms of those. The sliding tests were carried out using a ball-on-disk tribometer under ambient conditions. The coefficient of friction, wear volume and the cycles to failures of TiN coated bearing balls were measured with different normal loads and roughness of lower specimens. On the wear-life diagram, the normal loads and the cycles to failure showed the good linear relation on log-log coordinate. With a decreasing normal load, the diagram showed that the wear-limits, at which the coated bearing balls survived more than 4000cycles were under 0.1N of the normal load.

  • PDF

Fatigue Crack Growth Characteristics by the Cover Plate Shapes in the Steel Plate Girder (강판항(鋼板桁) 덮개판 형상에 따른 피로균열성장특성)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Jung, Jin-Suck;Lee, Hyung-Koon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.269-278
    • /
    • 1999
  • When a variety of repeated loads are given, most steel structures failed in much lower level of loads than static failure loads. In addition, bridge always includes the internal defects or discontinuities. from these, fatigue cracks initiates and can lead to sudden failure. Thus, in this study, tensile specimens by the cover plate shapes were used as the test specimens. The fatigue test was performed by constant amplitude fatigue loading and beach mark. From the results of this study, each specimen's fatigue section was observed. in addition, stress intensity factor at crack tip was calculated by using the Green's function which applied to discontinuous section where causing stress concentration. Therefore, the fatigue life of structural detail was investigated by adopting the theories of fracture mechanics. each specimen's crack shape is a semi-elliptical surface crack or center crack sheet, stress gradient correction factor, Fg is the most subjective of all stress intensity correction factors and fatigue life should be predicted by previous proposed function and finite element analysis.

  • PDF

Embedded smart GFRP reinforcements for monitoring reinforced concrete flexural components

  • Georgiades, Anastasis V.;Saha, Gobinda C.;Kalamkarov, Alexander L.;Rokkam, Srujan K.;Newhook, John P.;Challagulla, Krishna S.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.369-384
    • /
    • 2005
  • The main objectives of this paper are to demonstrate the feasibility of using newly developed smart GFRP reinforcements to effectively monitor reinforced concrete beams subjected to flexural and creep loads, and to develop non-linear numerical models to predict the behavior of these beams. The smart glass fiber-reinforced polymer (GFRP) rebars are fabricated using a modified pultrusion process, which allows the simultaneous embeddement of Fabry-Perot fiber-optic sensors within them. Two beams are subjected to static and repeated loads (until failure), and a third one is under long-term investigation for assessment of its creep behavior. The accuracy and reliability of the strain readings from the embedded sensors are verified by comparison with corresponding readings from surface attached electrical strain gages. Nonlinear finite element modeling of the smart concrete beams is subsequently performed. These models are shown to be effective in predicting various parameters of interest such as crack patterns, failure loads, strains and stresses. The strain values computed by these numerical models agree well with corresponding readings from the embedded fiber-optic sensors.