• Title/Summary/Keyword: repeated loads

Search Result 173, Processing Time 0.025 seconds

Deformation Characteristics of Clayey Soil Subject to Repeated Compressive Loading (반복재하(反復載荷)에 의한 점성토(粘性土)의 변형특성(變形特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.89-95
    • /
    • 1989
  • In this study, it is attempted to examine (1) the residual deformation and elastic deformation induced from the repeated loads (up to the maximum of 100,000 times) on fully compacted soil specimen, the relation between stress and strain by performing the unconfined compressive test, after repeated loads and (2) the effect of water content, dry density, number of cycle, repeated loads, etc. on the effect of the stress-strain relation. The rate of deformation caused by repeated loads greatly depends on to the condition whether the water content is above or below the plastic limit. It is possible to estimate the initial tangent modulus of soil by means of modulus of elastic deformation obtained by putting repeated loads on the clay soil.

  • PDF

Approximate Prediction of Soil Deformation Caused by Repeated Loading (반목하중으로 인한 지반의 변형 예측)

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.69-81
    • /
    • 1988
  • The Repeated Load Triaxial and Oedometer Tests to the weathered granite & silty clay soil have been fulfilled to investigate their dynarnic characteristics. The results obtained are summarized as follows ; 1. In the relation between the repeated triaxial compression and the oedometer test, the recoverable strain of weathered granite soil showed a tendency to decrease by the increase of the repeated loads number(N), and that of silty clay showed approximately constant values while the total strain increased continuously. 2. The changes of plastic strain was dependent to the level of deviator stress which is the most important element in the calculation of soil deformation under repeated load condition. And there was a significance of 10% between the level of stress and plastic strain. 3. When the soil was aimost dried or saturated to 100%, the deformation by the repeated loads was small. However the deformation showed peak around the saturation of 50%. 4. When the deformation was predicted by the repeated triaxial load tests of a laboratory, it is desirable to introduce the threshold stress concept in the calculation of deformation of subgrade of the pavement. 5. The improved design equation (Eq. 16) introducing the modulus of conversion(Fo), which is based on the Boussineq' s theory, is considered to be rational in the design of flexible pavement. From the above results, the deformation to the repeated traffic loads could be predicted by the repeated triaxial tests on the pavement materials or undisturbed soil layers, therefore it is think that the durable and econornic pavement could be constructed by reflecting that to the design.

  • PDF

Mechanical Properties of Soil under Repeated Load (반복하중(反復荷重)을 받는 흙의 역학적(力學的) 특성(特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • In case of repeated wheel-loads are acted on subbase course material, field test is generally executed to get the design standard, but the study shows dynamic properties of soils especially under repeated loads, which have not been well known to us. We try not only to obtain yield stress and elastic modulus of soil in terms of rheological model interpretation but also to investigate the influence of the repeated loads. Yield stress of soil induces hardening until approaching critical value along with the increase in number of cycle, whereas the change in modulus of elasticity with respect to the number of cycle greatly depends on the strength of repeated stress, if weak in strength of repeated stress, the modulus of elasticity increases along with the number of cycle, while if strong, it tends to decrease.

  • PDF

Behavior under repeated loads of beam partially superseded with steel fiber reinforced concrete in tension part (인장부에 강섬유 보강 콘크리트가 부분적으로 대체된 보의 반복하중 거동)

  • Park, Tae-Hyo;Park, Jae-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.437-440
    • /
    • 2004
  • In this study, dual composites concrete beam(DCC beam) partially superseded with steel fiber reinforced concrete in tensional part and normal strength concrete in compressive and remaining part is proposed. Based on flexural test under static loads, structural behaviors under repeated loads are investigated.

  • PDF

Fatigue Phenomenon of Mechanical Properties in Denim Fabrics for Slacks during Repeated Shear and Tensile Deformation (반복 전단.인장 변형에 따른 데님 직물의 피로도에 관한 연구)

  • Lee, Chang-Mi;Gwon, O-Gyeong;Park, Hui-Ung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.975-982
    • /
    • 1996
  • This study was conducted to examine the fatigue phenomenon of mechanical properites in denim fabrics for slacks during repeated shear and tensile deformation by analysing the change in the basic dynamic properties of fabrics on the basic of experiments to obtain the basic data necessary to measure their fatigue. In addition, this study was carried out by allowing these denim fabrics at market to go through the repeated deformation under such different loads as 500 gf/cm2 and 1000 gf/cm2 by using a simulated fatigue tester, by calculating both dynamic properties and hand value (HV) of these fabrics with KES-F system and then by obtaining the THV through these calculated properties. The results are as follows: 1 The fatigue phenomenon of dynamic properties was remarkably shown by the repeated shear and tensile deformation, while the increase of hysterical plastic substances was also remarkable in these shearing and bending properties. 2. The elasticity values of tensile, bending and compression properties, such as, B and G were reduced: whereas RT and RC values increased. It was shown, then, that those fabrics lost their elasticity and became flexible and soft with the increase of fatigue. 3. The fatigue phenomenon of hand value also showed that those fabrics became soft in relation with the change of all dynamic properties, and that their performance was also change to flexible hand value. 4. TRhe degree of fatigue was also shown by the loads given to the repeated deformation. It was shown that the fatigue was higher for the tensile load of 1000 gf/cm3 than did the standard load of 500 gf/cm3 It is necessary, therefore, to consider the load in accordance with their usage when examining the fatigue phenomenon with respect to the dynamic properties of clothing materials. 5. The loads were nearly not influenced by the change in the general hand value tended to show a little of increase with the increase of fatigue, Based on those results, it seems that the fatigue phenomonon is related to the loads given to the repeated deformation.

  • PDF

Time-Dependent Deformation Characteristics of Geosynthetic-Reinforced Soil Using Plane Strain Compression Tests (평면변형압축시험을 이용한 보강토의 시간 의존적 변형 특성 연구)

  • Yoo Chung-Sik;Kim Sun-Bin;Lee Bong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.85-97
    • /
    • 2005
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exist concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependent deformation characteristics of geosynthetic reinforced soil under sustained and/or repeated loads were investigated using a series of plane strain compression tests on geogrid reinforced weathered granite soil specimens. The results indicate that sustained or repeated loads can yield appreciable magnitudes of residual deformations, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.

Dynamic Nonlinear Analysis Model for Reinforced Concrete Elements considering Strain Rate Effects under Repeated Loads (변형율속도를 고려한 반복하중을 받는 철근콘크리트 부재의 동적 비선형 해석모델)

  • 심종성;문일환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.78-83
    • /
    • 1990
  • The current analytical techniques for R/C elements under severe dynamic repeated loads, like earthquake or impact, has two major problems; one is that the effects of strain rate are not considered and the other one is the current model was developed based on flexural behavior only. Thus, this study develops a computer software that can idealize the flexural and shear behavior of R/C elements using several parameters and also can consider the effects of strain rate. The analytical results using the developed analytical technique were compared with several experimental results and were generally satisfied.

  • PDF

Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads (쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델)

  • 김동호;김경진;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF

Shear-Fatigue Behavior of High-Strength Reinforced Concrete Beams under Repeated Loading (반복하중을 받는 고강도 철근콘크리트 보의 전단피로 거동)

  • 곽계환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.92-103
    • /
    • 1999
  • Recently structural damage has been frequently observed in reinforced concrete brdiges due to repeated loads such as vehicular traffic an due to continual overloads by heavy duty trucks. Therefore, the purpose of this experimental stduy is to investigate the damage mechanism due to fatigue behavior of high-strength reinforced concrete beams under repeated loads. From the test results, the relation of cycle loading to deflection is on the mid-span , the crack growth and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results , high-strength reinforced concrete beams failed to 57 ∼66 percent of the static ultimate strength . Fatigue strength aobut two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF