• Title/Summary/Keyword: repaired concrete structures

Search Result 92, Processing Time 0.019 seconds

Shear Performance of RC Beams Using Ductile Fiber Reinforced Cementitious Composite (DFRCC) (고인성 섬유 시멘트 복합재료를 사용한 RC보의 전단보강효과)

  • Eo, Seok-Hong;Son, Ki-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5844-5853
    • /
    • 2014
  • This paper presents the results of experimental investigations on the shear failure behaviors of reinforced concrete beams using ductile fiber reinforced cementitious composite (DFRCC). Total 10 RC beams of $150{\times}300{\times}1,000mm$ size were tested by 4-point bending under the displacement control. The main parameters of the experiment are surface treatment by grinding and preloading to the cracking point in the repair process. The load-displacement curves, diagonal tension cracking load, flexural cracking load, and shear strength were obtained. The test results showed that the DFRCC can be used effectively for restoring the shear strength approximately 99% to the original value under the condition that the appropriate thickness and surface treatment like grinding are assured. For further research, the specimens taken from real deteriorated structures will need to be tested after being repaired with DFRCC.

Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation

  • Guenaneche, B.;Benyoucef, S.;Tounsi, A.;Adda Bedia, E.A.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.151-166
    • /
    • 2019
  • This paper introduces a new efficient analytical method, based on shear deformations obtained with 2D elasticity theory approach, to perform an explicit closed-form solution for calculation the interfacial shear and normal stresses in plated RC beam. The materials of plate, necessary for the reinforcement of the beam, are in general made with fiber reinforced polymers (Carbon or Glass) or steel. The experimental tests showed that at the ends of the plate, high shear and normal stresses are developed, consequently a debonding phenomenon at this position produce a sudden failure of the soffit plate. The interfacial stresses play a significant role in understanding this premature debonding failure of such repaired structures. In order to efficiently model the calculation of the interfacial stresses we have integrated the effect of shear deformations using the equilibrium equations of the elasticity. The approach of this method includes stress-strain and strain-displacement relationships for the adhesive and adherends. The use of the stresses continuity conditions at interfaces between the adhesive and adherents, results pair of second-order and fourth-order coupled ordinary differential equations. The analytical solution for this coupled differential equations give new explicit closed-form solution including shear deformations effects. This new solution is indented for applications of all plated beam. Finally, numerical results obtained with this method are in agreement of the existing solutions and the experimental results.