• 제목/요약/키워드: removal rates

검색결과 1,032건 처리시간 0.024초

생장기와 동절기의 인공습지 오수처리 성능 (Wetland Performance for Wastewater Treatment in Growing and Winter Seasons)

  • 윤춘경
    • 한국농공학회지
    • /
    • 제41권4호
    • /
    • pp.37-46
    • /
    • 1999
  • Field experimnet of constructed wetland for rural wastewater treatment was performed from July 1998 to April 1999 including winter to examine the seasonal effect on the wetland performance. The system worked without freezing even under $-10^{\circ}C$ of air temperature as long as watewater was flowing. BOD removal rates varied in similar pattern as the air temperature, and winter performance was relatively lower than that in the growing season. However, removing performance during winter was still significant, and BOD removal rates were almost the the same as in the growing season. SS removal rate was relativelyless affected by temmperature, but lower decay rate during the winter can result in accumulation of the SS in the system, which releases constituents in the next spring and can affect whole system performance. The winter removal rates of nutrients like T-N and T-P were decreased about half compared to the growing season and low temperature. To maintain stabilized wetland performanced including winter time, supplying minimum heating for plants could be an alternative in field application. Experimental data was compared with NADB(North Americal Wetlands for Water Quality treatment database), and general performance of the system was within the reasonable range. The pollutant loading and effluent concentration of the experimented system were in high margin. Base on the experiment and databases, the required effluent water quality could be achieved if loading rate adjusted as ilulstrated in the database.

  • PDF

복합오염물질제거를 위한 현장반응층 이용에 관한 연구

  • 조현희;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.168-171
    • /
    • 2003
  • This research was conducted to assess the performance of the mixed reactive materials with sand, iron filings, and HDTMA-bentonite for trichloroethylene (TCE) and chromate removal under controlled groundwater flow conditions. TCE and chromate removal rates with the mixtures of iron filing/HDTMA-bentonite were highest among four columns due to reduction by iron filings and sorption by HDTMA-bentonite. The greater capacity of the mixed iron filing/HDTMA-bentonite compared HDTMA-bentonite was due to an enhanced chromate reduction in addition to chromate sorption. The presence of chromate caused greater inhibition of TCE removal in the column with iron filings, while the presence of TCE caused less inhibition of TCE. Also, nitrate caused the decrease in TCE removal relative to chloride. Nitrate ions may also significantly affect TCE reduction rates by competing for electrons with the chlorinated compounds. The anion and co-existed contaminants competing effects should be considered when designed permeable reactive barriers (PRBs) composed of zero valent iron for field applications to remediate TCE and chromate.

  • PDF

Removal of Hydrogen Sulfide and Methylmercaptan Using Thiobacillus in a Three Phase Fluidized Bed Bioreactor

  • KIM, KYUNG-RAN;KWANG-JOONG OH;KYUNG-YONG PARK;DONGUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.265-270
    • /
    • 1999
  • A three phase fluidized bed bioreactor immobilized with Thiobacillus sp. IW was tested to remove hydrogen sulfide and methylmercaptan with high loading rate. In a single gas treatment, the bioreactor removed 92- 98% of hydrogen sulfide with loading rate of 15- 66 g/l/h and removed 87-98% of methylmercaptan with loading rate of 14-60 gl/sup -1/h/sup -1/. In the mixed gas treatment, the removal efficiencies of hydrogen sulfide and methylmercaptan maintained at 89-99% for various inlet loading rates and were not affected by the inlet loading ratio of both gases in low loading rates. When the inlet concentration of methylmercaptan increased 3.8 times and was maintained for 30 h to observe the response of the bioreactor to sudden environmental change, the removal efficiency of methylmercaptan was maintained at an average of 91%.

  • PDF

AnnAGNPS 모형을 이용한 수변구역의 비점오염물질 제거능 산정 (Estimation of Nonpoint Pollutant Removal Capacity in the Buffer Strip with AnnAGNPS Model)

  • 박윤희;김태근
    • 한국환경복원기술학회지
    • /
    • 제9권5호
    • /
    • pp.22-31
    • /
    • 2006
  • AnnAGNPS model would be applied to simulate the pollutant removal capacity with the buffer strip in the Deachung reservoir watershed. In 2002, 2,270 tons of TN and 221 tons of TP were discharged from the nonpoint source pollutants in this watershed. During the rainy season, from June to September, 66.4% of TN and 71.9% of TP resulted from nonpoint source loads. AnnAGNPS model was also used to simulate the nutrients removal capacity from the buffer strip under the condition that the present landuse would be changed to forest. As the result of simulation, the removal rates of nutrients from the buffer strip of Daecheong reservoir watershed are 406 tons of TN, 39 tons of TP, which means reduction rates are TN 17.9%, TP 17.8%, respectively.

활성탄과 Membrane을 이용한 수처리효과에 관한연구 (A Study on The Effectiveness of Watertreatment Using Activated Carbons and Membranes)

  • 김영진;김영규;정문호
    • 한국환경보건학회지
    • /
    • 제23권4호
    • /
    • pp.67-72
    • /
    • 1997
  • To evaluate the effectiveness of water treatment using nanofiltration, ultrafiltration, and microfiltration systems, tapwater contaminated by bacteria and nitrate nitrogen was filtered, and then the rates of removal for many kinds of contaminants were comp.ared and investigated. The rates of turbidity removal by these systems are around 80% all of them. However, nanofiltration system is the most effective as hardness removal is 80%, suspended solids 90%, total residual chlorine 90% and nitrate nitrogen 69%. Among nanofiltration, ultrafiltration and microfiltration systems, nanofiltration system is the most stable in flow rate of permeate. Comparing hollow and spiral type of ultrafiltration, microfiltration each, spiral type is more stable than hollow type owing to rinsing effect of brine. The values of pH in ultrafiltration and microfiltration systems are between 7, 0 and 7.5, and that of nanofiltration system is low to 6.2-7.0. The effectiveness of heterotrophic bacteria removal is the most excellent in the nanofiltration system.

  • PDF

Peroxidation 전후의 토양 비표면적 변화와 토양산성화 임계부하량 계산에의 의의 (The Changes of Specific Surface Area of Soils after Peroxidation and Its Implication for the Calculation of Critical toads of Soil Acidification)

  • Yeo, Sang-Jin;Lee, Bumhan;Soyoung Sung;Kim, Soo-Jin
    • 한국광물학회지
    • /
    • 제15권3호
    • /
    • pp.195-204
    • /
    • 2002
  • 광물조성과 노출표면적(exposed surface area)은 토양풍화속도 계산모델에 영향을 미치는 중요한 요인들이다. PROFILE 등 기존의 풍화속도 계산모델에서는 입도분석자료에 기초한 기하학적 계산값이나 $N_2$-BET 비표면적 등을 그대로 노출표면적으로 적용하고 있다. 그러나, 토양은 광물과 유기물의 혼합체로써 노출표면적을 정확히 구하기는 상당히 어려운 것이 사실이다. 본 연구에서는 유기물의 영향에 의한 토양광물의 노출표면적변화를 토양 깊이에 따른 peroxidation 전후의 N2-BET 비표면적값을 통해 살펴보고, 토양칼럼실험을 이용하여 풍화속도의 차이를 살펴보았다. 실험결과 peroxidation 후의 $N_2$-BET 비표면적은 1.68~4.87 $m^2$/g의 범위에서 증가하였으며, 깊이에 따라 증가하는 범위가 감소하는 경향을 보여주었다 이는 부식산 등 토양표면에 농집되어 존재하는 다양한 형태의 유기산 등이 광물의 노출표면적을 감소시키고 있다는 것을 의미한다고 할 수 있다 기존의 토양풍화속도 모델에서 토양광물 노출표면적변화 계산에 있어서 광물-유기산간의 결합에 의한 영향을 결합세기 측면에서 고려하고 정량화 하는 것이 향후과제라고 생각된다.

팔당호 연안대 초지생태계에서 낙엽 구성성분의 유실률 III.인 (The Removal Rates of the Constituents of Litters in the Littoral Grassland Ecosystems in the Lake Paldangho III.Phosphorus)

  • 홍정림;심규철;장남기
    • 아시안잔디학회지
    • /
    • 제10권2호
    • /
    • pp.159-166
    • /
    • 1996
  • To estimate removal rate of phosphorus in aquatic grassland ecosystems of Paldangho, this investigation was conducted along with the coast of a lake. The experimental results may be summarized on communities of Typha angustata, Miscanthus sacchriflorus Phragmites communis and Scirpus tabernaemontani as follows. The annual production of phosphorus for the litters in T. angustata, M saccharsflorus, P. cam-munis and S. taiernaemontani grasslands were 10.252 g /$m^2$, 3.833 g /$m^2$, , 2.656 g /$m^2$, and 5.210 g /$m^2$, respectively. The ratio of annual production of P accumulated on surface soils in a steady state provides estimates of the removal rate r, The estimated removal rates r of P were 0.58, 0.78, 0.68 and 0.59 in T. angustata, M. sacchariflorus, P. communis and S. tabernaemontani grasslands re- spectively. The removal and accumulation of 50, 95 and of 99% of its steady state level, the estimates for P of T. angustata were 1.195, 5.173 and 8.623 years, in M. sacchariflorus were 0.880, 3.842, and 6.403 years, and in P. cammunis were 1.014, 4.390, and 7.316 years respectively, In S. tabernaemontani grassland required period were 1.178,5.099 and 8.500. Key words:T. angustata, S. tabernaemantani, P. communis, S. tabernaemontani, Paldangho, Removal rate, Phosphorus.

  • PDF

회전매체를 가진 완전혼합 활성슬러지/Solid Contact 공법을 이용한 하수처리에 관한 연구 (Sewage Treatment using Moving Media Complete Mixing Activated Sludge/Solid Contact Process)

  • 김홍태
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.67-75
    • /
    • 1993
  • This study was carried out to investigate the applicability of Solid Contact Process for the improvement of Moving Media Complete Mixing Activated Sludge(MMCMAS) effluents. Laboratory MMCMAS Reactor and MMCMAS/Solid Contact were operated at the hydraulic loading of 122~340 L/m$^2$/d. The conclusions from this study were as follows ; The addition of Solid Contact tank to the MMCMAS reactor has increased the SCOD and SBOD removal efficiencies of 4 to 67% and 2 to 41%, respectively. In addition, the increments of nitrification rates were about 13 to 46%. It was also observed that the addition of Solid Contact tank has greatly increased the organic removal efficiencies at the higher hydraulic loading rates and also decrement of sludge production rates was 0.1 gVSS/gBODrem. It was therefore concluded that the addition of Solid Contact tank could have polished the effluent of MMCMAS at the higher hydraulic loading rates.

  • PDF

Performance of Three Different Biofilter Media in Laboratory-Scale Recirculating Systems for Red Seabream Pagrus major Culture

  • Harwanto, Dicky;Oh, Sung-Yong;Park, Heung-Sik;Jo, Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.371-378
    • /
    • 2011
  • Juvenile red seabream (mean body weight 29.0 g) were reared in recirculating culture systems with three different biofilter media, sand (SF), polystyrene microbeads (PF), and Kaldnes beads (KF). The efficiencies of the three different biofilter media were also tested. The SF was fluidized, and the PF and KF were trickled. All treatments were duplicated. The volumetric removal rates of total ammonia nitrogen by SF, PF, and KF were 193.8, 183.9, and 142.6 g $m^{-3}day^{-1}$, respectively, and those of nitrite nitrogen ($NO_2$-N) were 113.4, 105.9, and 85.8 g $m^{-3}day^{-1}$, respectively. The TAN and $NO_2$-N removal rates of KF were lower than those of SF and PF (P < 0.05), but there was no significant difference in these rates between SF and PF (P > 0.05). Among the biofilters used, only KF showed total suspended solid (TSS) removal capacity. The TSS removal efficiencies of SF and PF were negative. The growth rates of fish in SF were significantly higher than those in KF but not higher than those in PF. There was no difference in growth rate between fish in PF and KF. The specific growth rate and feed conversion efficiency of red seabreams in KF were lower than those in SF and PF, but there were no significant differences between SF and PF. These results indicate that sand and polystyrene microbeads are recommended for red seabream culture in a recirculating system.

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.