• 제목/요약/키워드: removal rates

Search Result 1,028, Processing Time 0.026 seconds

Study on the optimum operation system of Sequencing Batch Reactor (연속 회분식 반응조의 최적 운전시스템에 관한 연구)

  • Eom, Tae Kyu;Ko, Eun Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.54-61
    • /
    • 1999
  • SBR process used to evaluate the removal of organics, nitrogen and phosphorus on the basis of a report of research on a precedence at various operation cycle and condition change. Effluent concentration of COD were 50mg/l, 50mg/l, 90mg/l respectively, The removal rates of COD were nearly over 95% at Run 1, 2 and 4. But at Run 3, Effluent concentration of COD was 255.0mg/l, The removal rate of COD was 87% at Run 3. As Oxic/Anoxic rate was fixed and operating cycle of Oxic/Anoxic was changed, the removal rates of T-N were 74.7%, 46.9%, 28.5%, 63.3% respectively at Run 1~4. The case of Run 1 was best result. The removal rates of T-P was appeared in proportion to T-N removal rates and rest of $NO_2-N$. The removal rates of T-P were 51.2%, 35.5%, 41.5%, 51.9% respectively. The removal rates of COD, T-N, T-P were influenced on the change of SBR operation cycle. As organic loading rate was $1.43kgCOD/m^3day$ and C/N ratio was 3.0, operation cycle of Run 1 was best condition of T-N removal rates and T-P removal.

  • PDF

Comparison of Removal Rates of Sedimentation and DAF(Dissolved Air Flotation) for various Different Conditions in Water Treatment (정수처리공정의 침전법을 개선하기 위한 대체공정으로 용존공기부상법(DAF)을 사용할 때 여러조건에 대한 처리효율 비교)

  • Kim, Mi-Jeong;Lee, Byoung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.118-125
    • /
    • 1997
  • Conventional sedimentation method has some limitations for turbidity removal in water treatment because drinking water sources are getting polluted. Removal rates of turbidity using DAF and sedimentation process were compared for various water conditions to know whether DAF is effective to improve sedimentation process. Water samples were clay(gravity 2.65) water 100mg/l, H raw water, mixed water of H raw water and clay 100mg/l, and mixed water of HA(Humic Acid) 5mg/l and clay 100mg/l. Other parameters were temperature, coagulants(Alum, $FeCl_3$), and treatment time. Water temperature greatly affected in removal rates of turbidity for sedimentation and DAF. Generally DAF was more effective in removal rates of turbidity than sedimentation at the same experimental condition. Removal rates of $UV_{254}$ were high to over 90%, and independent of temperature and coagulant.

  • PDF

The Removal Rate of the Constituents of the Litters in the Aquatic Plant Ecosystems I. Phragmites longivalvis Grasslands in a Delta of the Nakdong River (수생식물 생태계에 있어서 낙엽의 구성성분의 유실률 I. 낙동강 삼각주지역의 갈대 초지)

  • 장남기;오경환
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.331-342
    • /
    • 1995
  • An investigation was performed to reveal the removal rates of organic constituents of the litters in a Phragmithea longivalvis grassland in a Delta of the Nakdong River, The removal rates of the inorganic and organic materials are determined by the mathematical models. The removal rates and time required to decay up to a percentage of each organic constituent were calculated using these new models. The removal rates of cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein were 2.67, 1.39, 1.25, 1.02, 0.92, 0.49 and 0.47, respectively, The periods required to reach half time to the steady state of the removal and accumulation for cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein of the litter were 0.26, 0.50, 0.55, 0.68, 0.75, 1.41 and 1.48 years, respectively.

  • PDF

The Removal Rates of the Constituents of Litters in the Littoral Grassland Ecosystems in the Lake Paldangho I. Organics (팔당호 연안대 초지생태계에서 낙엽 구성성분의 유실률 I.유기물)

  • 심규철;강경미;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.2
    • /
    • pp.143-150
    • /
    • 1996
  • The removal rates of gross production and organic matters were investigated in the Lake Paldangho. In 1995 and 1996, soils and litter sarraples were collected and annual mean production and removal rates were calculated. Communities in the Lake Paldangho were Phragrnites communis, Miscanthus sacchariflorus, Typha aegustata and Scirpas tahernaemoutani. Removal constants of aquatic plant communities estimated by the mathematical theoretical models, were 0.826, 0.567, 0.571 and 0.751, respectively. The durations of reaching half of initial organic amounts were 0.839 yeras, 1.221 years, 1.213 years and 0.922 years respectively at the steady state of removal and accumulation for organics For organics, the rapidity of removal were more speedy P. communis, S.tahernaemontani, T. augustata, M sacehariflorus in order. The times needed for 99% removal were 6.051 years, 6.651 years, 8.752 years and 8.811 years, respectively. Key wotds:Gross production, Organic matters, Lake Paldangho, Phragmites communis, Mis-ca ethus sacchariflorus, Typha angustata, Scirpus tahernaemoutani., Removal constants.

  • PDF

The Removal Rates of the Constituents of Litters in the Littoral Grassland Ecosystems in the Lake Paldangho VI. Cu, Fe and Zn (팔당호 연안대 초지생태계에서 낙엽 구성성분의 유실률 VI. Cu, Fe 및 Zn)

  • 윤신선;이인숙;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • The investigation was performed to reveal the removal rate of metal constituents of litters in a Phragmites communis Miseanthus sacchariflorus, Typha angastata and Seirpas tabernaemontani grasslands in the lake Paldangho. The removal rates of metal constituents are determined by the mathematical models. The removal rates and time required to decay up to a percentage of each metal constituent were calculated using these model. The removal rates of Cu, Fe and Zn were 0.61, 0.58 and 0.79 in Phragmites communis 0.39, 0.47 and 0.68 in Miseanthus saccharflorus; 0.26, 0.09 and 0.23 in Typha angustata: 0.56, 0.27 and 0.67 in Seirpus tabernaemontani respectively. The periods required to reach half time to the stedy state of the removal and accumulation for Cu, Fe and Zn were 1,13,1.19 and 0.79 years in Phragmites communis; 1.79, 1.49 and 1.02 years in Miscanthus sacchariflorus; 2.70, 7.43 and 2.96 years in Typha angustata ; 1.23, 2.58 and 1.04 years in Scirqus tabernaemontani, re-spectively. Key words: Phragmites communis, Miscanthus sacchariflorus, Typha angustata and Scirpus tabernaemontani, lake Paldangho, Removal rate, Cupper, Iron, Zinc.

  • PDF

Removal Rates of VOCs(Volatile Organic Compounds) for Treatment Condition using DAF(Dissolved Air Flotation) in Water Treatment (DAF(Dissolved Air Flotation)를 이용한 정수처리에서 처리조건에 따른 VOCs(Volatile Organic Compounds)의 처리효율에 대한 연구)

  • Kim, Mi-Jeong;Jun, Se-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.91-100
    • /
    • 1999
  • Treatment conditions of DAF(Dissolved Air Flotation) and removal rates of VOCs(Volatile Organic Compounds) in mixed water of H raw water and VOCs were investigated. The used VOCs were benzene, toluene, ethylbenzene, and xylene in aromatic compounds and iso propyl mereaptan, n-butyl mereaptan, dimethyl disulfide, and iso butyl mercaptan in odors. The related parameters include water type, treatment method, clay concentration, pH condition, flocculation time, flotation time, per-cent recycle, water temperature, pressure. The removal rates of VOCs were different on treatment process and water condition. Treatment time was longer, removal rates of VOCs was higher. Water temperature was more important than pressure in DAF parameters. Molecular weight was related with removal rate in several kinds of VOCs were decraesed by competition of each component in II raw water. When algac blooming D water was treated by DAF, TCOD(Total chemical Oxygen Demand) and chorophyll a was removed over 96%.

  • PDF

Characteristics of Heavy Metal Ion Adsorbent Extracted from Crab Shell (Crab Shell로부터 추출한 중금속 흡착제들의 특성)

  • 현근우;이찬기;이해승
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.46-55
    • /
    • 1999
  • This study compared the adsorption characteristics of heavy metal ions by crab shell, treated crab shell with 2N-HCl, treated crab shell with 4%-NaOH, chitin and chitosan.Using crushed crab shell, the heavy metal ions removal rates of $Cd^{2+}$ and $Zn^{2+}$ were about 70-80% in 45minutes, but the removal rates of $Cu^{2+}$, $Cr^{6+}$ and $Pb^{2+}$ was less than 10%, 10% and 30%, respectively. For the by-products crab shell by 2N-HCl treatment, it was shown that the removal rates of $Cu^{2+}$ and $Pb^{2+}$ were about 70-80% in 45minutes reaction. But, some problems were observed, that the contained protein in crab shell was changed into gel in the mixing solution after a few hours. For the by-products of crab shell by 4%-NaOH treatment, the removal rates of Pb and Zn were about 90% in 45 minutes, and those of capacity of chitin and chitosan powder was better than those of the other by-products. The more adding to the adsorbent dosages increased the removal rates, and the adsorption reaction was rapidly occurred in a few minute. Using 1.0 wt% chitin powder, the heavy metal removal rates were ordered $Cu^{2+}$(94%) > $Zn^{2+}$(89%) > $Cd^{2+}$(88%) > $Pb^{2+}$(77%) > $Cr^{6+}$(58%) in 45 minutes. Using 1.0 wt% chitosan powder, the heavy metal removal rates were ordered $Cu^{2+}$(99%) > $Pb^{2+}$(96%) > $Cd^{2+}$(79%) > $Zn^{2+}$(71%) > $Cr${6+}$(46%) in 45minutes. The degree of degree of deacetylation by prepared chitosan was 91%.The Freundlich adsorption isotherm of $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$, when it was applied to 1.0 wt% chitosan powder in minutes, can be acceptable very strictly. The equation constant (1/n) for $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$ were 0.54 0.41 and 0.23 respectively.

  • PDF

Review of 5-year Experimental Data from Treatment Wetland (인공습지 실험시설의 5년간 결과 및 고찰(지역환경 \circled3))

  • 김민희;윤춘경
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.649-654
    • /
    • 2000
  • Field experiment was performed from August 1996 to June 2000. The pilot plant was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the treatment basin. The treatment basin was composed of sand and reed. Average removal rate of BOD, SS was about 75.9%, 73.4%, respectively. T-P removal rate was about 47.3%, and T-N removal rate was 19.6%. The reason for poor T-N removal might be due to high influent concentration and short retention times. As operation period increased, BOD removal rates were increased, and SS and T-P removal rates did not change significantly, but T-N removal rates were decreased.

  • PDF

A Vegetation Purification System for Water Quality Improvement in Irrigation Reservoirs (저수지 수질개선을 위한 식생정화시스템)

  • 박병흔
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.87-95
    • /
    • 2000
  • A vegetation purification system was applied to improve water quality of Masan Reservoir in Korea, which was composed of constructed wetlands in series. Five different kinds of macrophytes were planted in each wetland. The system was operated with the condition of low concentrations and high hydraulic loadings. Removal efficiencies(%) of chemical oxygen demand(COD) , total nitrogen(T-N) and total phosphorus(T-P) in this system were 9.0, 12.8, 20.1% , respectively. and removal rates(g/$m^2$/d) were 1.9(COD), 0.34(T-N) and 0.05(T-P) . Comparing this system with other wetlands operated at low hydraulic loadings, average removal efficiencies were low but removal rates were relatively high. Accordingly, this system could be applied to imporve reservoir water quality, because removal rates are more important than removal efficiencies in case of reservoir water quality improvement . However, the removal efficiencies and rates of this system are less than those of the hydroponic biofilter method which is a kind of a constructed wetland and utilize root zones of emergent macrophytes for trapping pollutants. Therefore, it is recommended that this system should be modified to utilize root zones of emergent macrophytes enough to improve reservoir water quality more efficiently.

  • PDF

Comparison of Seasonal Nitrogen Removal by Free-Water Surface Wetlands Planted with Iris pseudacorus L. (노랑꽃창포 자유수면습지의 계절에 따른 질소제거 비교)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.121-132
    • /
    • 2011
  • Removal rates of $NO_3$-N and TN in the free-water surface wetland system during winter; December, January, February and March, spring and fall; April, May, October and November, and summer; Jun, July, August and September were investigated. The system was established on floodplain in the downstream reach of the Gwangju Stream in 2008. It measures 50 meters in length and 5.5 meters in width. Iris pseudacorus L. grown in pots for about two years were planted in the system. The water stream was funneled in by gravity and its effluent was discharged back in. Volumes and water quality of inflow and outflow were analyzed from December 2008 to November 2010. The inflow was averaged approximately 350 $m^3/day$ and hydraulic residence time was about 3 hours. Average influent and effluent $NO_3$-N concentration was 3.75 and 3.35 mg/L, respectively and $NO_3$-N retention was amounted to 10.6%. Influent and effluent TN concentration were averaged 4.93 and 4.30 mg/L, respectively and TN abatement reached to 12.9%. One-way ANOVA statistics claimed that the average removal rates of $NO_3$-N and TN during winter, spring and fall, and summer were not always the same (p<0.001). The t-Tests of three pairs among $NO_3$-N removal rates of winter, spring and fall, and summer illustrated that the removal rates of winter ($5.04{\pm}1.94$), spring and fall ($10.53{\pm}2.24$), and summer ($18.61{\pm}2.26$) were significantly different each others (p<0.001). Among TN removal rates, the three pairs of t-Tests of three seasons showed that the removal rates of winter ($5.21{\pm}2.51$), spring and fall ($11.71{\pm}3.12$), and summer ($21.53{\pm}4.86$) were significantly different from each others (p<0.001).