• Title/Summary/Keyword: removal efficiencies

Search Result 1,115, Processing Time 0.026 seconds

A Study on the Removal of Phosphorus in the Lake (호수내의 인 제거에 관한 연구)

  • Kim, Kyoungtae;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1998
  • The feasibility of usage of sludge from water treatment plant and chalk from schools and institutes was investigated to remove the phosphorus in the lakes which induce the eutrophication every year. In this study phosphorus removal efficiencies of sludge and chalk were investigated by changing various factors. Higher phosphorus removal efficiency using larger particle size of chalk was observed which means that the surface area is not an important factor in removing phosphorus in aqueous phase. The proper shaking time and temperature were 2 hours and $25^{\circ}C$, respectively. The removal efficiency using sludge from water treatment plant was almost 100%, which is similar to those of CaO and $Ca(OH)_2$. It means that sludge can be reused in removing phosphorus. It was also found that chalk was better in removing phosphorus under alkaline condition and sludge was better under acidic condition. About 75% phosphorus removal efficiency was observed using sludge from the water sample in Lake Sihwa.

  • PDF

Ammonia Removal Characteristics of Biolfilm Reactor (생물막을 이용한 상수 원수에서의 암모니아 제거 특성)

  • Shin, Hang-Sik;Lim, Kycong-Ho;Lee, Sang-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 1996
  • The presence of ammonia, usually in the form of ammonium ion ($NH_4{^+}$), can enhance bacterial growth m the distribution system and make the production of drinking water more costly if ammonium must be removed to ensure good disinfection. Removal of ammonia by biological oxidation could be economical which prevents excess chlorine dosage In this research, effects of hydraulic retention time (HRT) and media type on the ammonia removal efficiencies of submerged biofilm reactor were investigated. The biofilm reactors combined the characteristics of high biological solids capture efficiency and good hydraulic control. The results indicate that biofilms can remove over 77 percent of the ammonia with HRT of longer than 2 hr even at low temperature ranging from 14.6 to $16.6^{\circ}C$. The HRT has a significant effect on nitrification. The overall nitrification and efficiency of ammonia removal increase with increasing HRT. It has also been observed that when the fibrous media was used, the ammonia removal, nitrification rate and endurance to shock improved.

  • PDF

A Study on the Removal of SOx and NOx Using Catalytic Ceramic Filters (촉매담지 세라믹 필터를 이용한 황산화물과 질소산화물의 제거에 관한 연구)

  • 홍민선;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.455-464
    • /
    • 1998
  • Removal teals of Soxmox were performed using low density ceramic filters doped with various catalysts. Disc type (50 mmO.Dx10 mmt) low density ceramic filters were doped with three different catalysts such as Cu to remove SOx and NOx, and Mn and Co to remove NOx. The air permeabilities and specific surface areas were 40~50cc/min.cm2.cmH2O and 4.1~8.88 m2/g, respectively. Also, the peak pore sizes of catalyst support were 3~5nm. Tests were focused to search optimum operating temperatures for different catalysts. It was found that as the CuO content increases, SOx removal efficiency was increased. NOx removal efficiencies for Mn, Cu and Co, were 85% at 30$0^{\circ}C$, 90% at 40$0^{\circ}C$ and 90% at 45$0^{\circ}C$, respectively.

  • PDF

Treatment of Fish Processing Wastewater Using Sequencing Batch Reactor (SBR) (연속회분식 반응기를 이용한 수산물 가공폐수 처리)

  • Paik, Byeong Cheon;Shin, Hang Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 1994
  • This research investigated efficient operation mode for the successful performance of SBR(sequencing batch reactor) treating fish processing wastewater, and the effect of sodium chloride (NaCl) on treatment efficiency. 2-hour-annerobic, 6-hour-aerobic and 3-hour-anoxic operation during reaction period was found an effective operating method for organic and nitrogen removal from fish processing wastewater in SBR system. The average removal efficiencies of COD, BOD, and total nitrogen in SBR operated continuousely were 91%, 95%, and 67.1%, respectively. The estimated values of biomass yield coefficient(Y), microbial decay coefficient($K_d$), and bioreaction rate constant(K) were $0.35gMLSS/gCOD_{removed}$, $0.015day^{-1}$, and $0.209hr^{-1}$, respectively. As NaCl concentration increased from 5 to 30g/L, sludge settleability was cnhanced but organic removal in the reactor was decreased. NaCl of influent had considerable relationship with COD removal, whereas it did not significant affect nitrogen removal.

  • PDF

Study of ammonia-gas removal′s characteristics using wood-material (침엽수를 이용한 암모니아 가스 제거효율 연구)

  • Park Young Gyu
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.7-14
    • /
    • 2004
  • This paper was investigated to clarify the possibility of ammonia-gas removal by essential oil. First of all, the chemical analysis was performed to analyze the composition of an essential oil by GC-MS. The monoterpenes in an essential oil react with ammonia by neutralization and their reaction mechanism was elucidated. Based on their chemical neutralized reaction, the removal efficiencies of ammonia gas were studied to derive the optimal conditions in the scrubber tower such as optimal temperature and pH. The experimental result shows that the removal efficiency of ammonia gas was achieved over 80 % by the misty aerosol dispersion of scrubber tower.

Removal Characteristics of Iron, Manganese and Organics in Ground Water Using Ozonation (오존을 이용한 지하수의 철.망간 및 유기물 제거특성)

  • 선창욱;우달식;남상호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.43-49
    • /
    • 1997
  • Iron and manganese problems in ground water affect far more water systems than almost any other water quality concern. The purpose of this study is to find the optimum condition of ozonation for the removal of dissolved iron, manganese and other organics in the polluted ground water. We proposed 4mg/l, 8mg/l as optimum ozone dose for the removal of $Fe^{2+},{\;}Mn^{2+}$, respectively. The removal efficiencies of $COD_{Mn}$ and $COD_{Cr}$ in ozone dose of 2mg/l - 6mg/l were about 40-50%. The removal efficiency of $NH_{3}-N$ was about 30-40% at pH8.5. In conclusion, it needs further systematic study and research concerned to treatability of $Fe^{2+},{\;}Mn^{2+}$ and biodegradability of organic compounds using Ozonation followed by biological filtration process in ground water treatment train.

  • PDF

Numerical Analysis on Removal Efficiency of Water Droplets in a Curved Vane Mist Eliminator with Consideration of Evaporation and Condensation at Surface of Droplets (액적 표면에서 증발 및 응축을 고려한 곡면 형상 액적 제거장치의 제거 효율에 대한 수치 해석)

  • Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.135-143
    • /
    • 2016
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For accurate understanding of removal process in a curved vane mist eliminator, a numerical model including turbulent dispersion, evaporation and condensation of water vapor at surface of droplets is required. A two-stage curved vane mist eliminator has been modeled, and fluid flow of mixture of air and water vapor and droplet trajectories were solved simultaneously with taking into account two-way coupling. Removal efficiency of droplets with various inlet condition of relative humidities (RH, 40%, 90%, and 100%) were compared. As RH increased, the effect of evaporation decreased and inertial separation efficiencies of droplets obtained increased especially for droplets of diameter below 10 micrometers.

Phosphate removal in water by mesostructure based on titanium and silica (티타늄과 실리콘 기반의 메조구조체를 이용한 수중의 인 제거)

  • Lee, Seung-Yeon;Choi, Jae-Woo;Lee, Sang-Hyup;Lee, Ki-Bong;Hong, Seok-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.725-730
    • /
    • 2011
  • In this study, it was investigated that the feasibility of utilizing inorganic mesostructures for removal of phosphate in water. The comparison of the efficiency for phosphate adsorption between inorganic mesostructures was conducted. X-ray diffraction(XRD) and Brunauer-Emmett-Teller(BET) methods were used to characterize these mesostructures. The efficiencies of silica and titanium mesostructures for the removal of phosphate from aqueous solution were investigated. Equilibrium data were analyzed using the Langmuir isotherm. The maximum adsorption capacities of mesostructure adsorbents were found to be 49.3 and 19.5 mg $g^{-1}$ for the titanium and silica mesostructures, respectively. The adsorption kinetics was described by a pseudo third-order kinetic model. The results from this study indicated that the titanium mesostructure has the potential to be utilized for the cost-effective removal of phosphate from wastewater.

Evaluation of SBBR Process Performance Focused on Nitrogen Removal with External Carbon Addition (외부탄소원을 사용한 SBBR의 공정 특성 및 질소제거)

  • Han, Hyejeong;Yun, Zuwhan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.566-571
    • /
    • 2006
  • A sequencing batch biofilm reactor (SBBR) operated with a cycle of anaerobic - aerobic - anoxic - aerobic has been evaluated for the nutrient removal characteristics. The sponge-like moving media was filled to about 10% of reactor volume. The sewage was the major substrate while external synthetic carbon substrate was added to the anoxic stage to enhance the nitrogen removal. The operational results indicated that maximum T-N and T-P removal efficiencies were 97% and 94%, respectively were achieved, while COD removal of 92%. The observations of significant nitrogen removal in the first aerobic stage indicated that nitrogen removal behaviour in this SBBR was different to conventional SBR. Although the reasons for aerobic nitrogen removal has speculated to either simultaneous nitrification and denitrification or anoxic denitrification inside of the media, further researches are required to confirm the observation. The specific oxygen uptake rate (SOUR) test with biofilm and suspended growth sludge indicated that biofilm in SBBR played a major role to remove substrates.

A Study on the Treatment of Wastewater Containing Surfactants (계면활성제를 함유한 폐수의 효율적 처리 방법에 관한 연구)

  • Shin, Myoung-Ok;Chung, Moonho
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.109-120
    • /
    • 1997
  • The purpose of this study is to evaluate the effectiveness of wastewater treatment containing surfactant. For that, comparative analysis of effectiveness of Featon Oxidation, Aluminum Sulfate, PAC (Poly Aluminum Chloride) on the treatment of the synthetic wastewater containing LAS (Linear Alkyl Sulfate), a main component of the commercial detergent was carried. Then, the optimum pH, the dosage of reagents, and the concentration of the LAS in each treatment were determined. The results of the study were summarized as following. 1. In Fenton Oxidation, optimal pH was 3 and 97.92% removal of LAS was achieved. However, the increase of the pH reduced the efficiency of LAS removal. The proper chemical dosages of FeSO$_4$ and $H_2O_2$ were 300 mg/l and the increase of dosages didn't affected the removal efficiency. Therefore, it was concluded that the economic chemical dosage was 300 mg/l of FeSO$_4$ and $H_2O_2$. 2. In case of Alum treatment, optimal pH was 11 with 61.13% removal efficiency. At other pH range, the removal efficiency was very low indicating that removal efficiency is greatly influenced by pH. The proper chemical dosage was 200 mg/l with the removal efficiency of 77.65%. The increase of chemical dosage, however, reduced the removal efficiency. 3. In case of using PAC, optimal pH was 6 with 97.99% removal efficiency. The result showed that wastewaters containing surfactant were almost completely removed at pH 6 by PAC. Removal efficiency was decreased by increasing PAC dosage higher than 400 mg/l and dosage over 700 mg/l of PAC abolished the treatment. 4. The comparative analysis of three methods revealed that the effective pH ranges were at pH 2-5 with Fenton oxidation, at pH 6-11 with PAC, and pH 11 with Alum. The removal efficiencies at these pH were 83.95-97.92%, 75.98-97.99% and 61.13%, respectively. 5. Increase in LAS concentration reduced the removal efficiencies of all three methods. In the case of PAC or Alum treatment, treatment abolished at LAS concentration higher than 700 mg/l.

  • PDF