• 제목/요약/키워드: removal efficiencies

검색결과 1,115건 처리시간 0.025초

오존접촉산화 공정과 Peroxone AOP 공정을 이용한 염색폐수방류수 고도산화 처리특성 연구 (Study on Treatment Characteristic of Advanced Oxidation Process using Ozone Oxidation and Peroxone AOP Process for Waste Dyeing Water Effluent Treatment)

  • 박준형;신동훈;류승한;조석진;이상헌
    • 한국염색가공학회지
    • /
    • 제23권4호
    • /
    • pp.274-283
    • /
    • 2011
  • Effect of pH on ozone oxidation and peroxone AOP(Advanced Oxidation Process) process was analyzed and the optimal efficiency for both processes was obtained at pH 7.5. In case of ozone oxidation process, the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were measured to 93%, 70% and 89% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90 min(ozone dosage of 201mg/$\ell$), the efficiencies of color, $COD_{Mn}$ and $BOD_5$ removal were increased by 3~5 %, indicating that the increment of removal efficiency was insignificant considering longer reaction time. Similarly, the ozone/$H_2O_2$ ratio was optimized to 0.5 for peroxone AOP process. Removal efficiencies of color, $COD_{Mn}$ and $BOD_5$ were measured 95%, 81% and 94% at a reaction time of 50 min(ozone dosage of 111.67mg/$\ell$). When reaction time increased to 90min(ozone dosage of 201mg/$\ell$), the removal efficiency of color, CODMn, and BOD5 increased slightly by 1~5%.

석회계 입상알칼리재의 용출특성과 이를 이용한 인 결정화공정의 적용성 (Elution characteristics of lime-based granular alkaline material and applicability of phosphorus crystallization processes)

  • 장향연;박나리;장여주;안광호;임현만;김원재
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.577-586
    • /
    • 2017
  • One of the major sources causing eutrophication and algal blooms of lakes or streams is phosphorus which comes from point and nonpoint pollution sources. HAP (hydroxyapatite) crystallization using granular alkaline materials can achieve the decrease of phosphorus load from wastewater treatment plants and nonpoint pollution control facilities. In order to induce HAP crystal formation, continuous supply of calcium and hydroxyl ions is required. In this research, considering HAP crystallization, several types of lime-based granular alkaline materials were prepared, and the elution characteristics of calcium and hydroxyl ions of each were analyzed. Also, column tests were performed to verify phosphorus removal efficiencies of granular alkaline materials. Material_1 (gypsum+cement mixed material) achieved the highest pH values in the column tests consistently, also, Material_2 (gypsum+slag mixed material) and Material_3 (calcined limestone material) achieved over pH 9.0 for 240 hours (10 days) and proved the efficiencies of long-term ion supplier for HAP crystallization. In the column tests using Material_3, considerable pH increase and phosphorus removal were carried out according to each linear velocity and filtration depth. T-P removal efficiencies were 87.0, 84.0, 68.0% and those of PO4-P 100.0, 97.0, 80.0% for linear velocity of 1.0, 2.5, 5.0 m/hr respectively. Based on the column test results, the applicability of phosphorus removal processes for small-scale wastewater treatment plants and nonpoint pollution control facilities was found out.

하천 내 수질 개선을 위한 박층류 하도의 적용 및 평가 (Application and Evaluation of the Sheet Flow Channel for Water Quality Improvement in the Stream)

  • 이두한;김명환;구정은;김원
    • Ecology and Resilient Infrastructure
    • /
    • 제6권4호
    • /
    • pp.208-216
    • /
    • 2019
  • 본 연구는 하천 내의 자연형 수질정화기법으로 박층류 하도의 설계방법과 효율에 대해서 연구하였다. 박층류 하도의 설계인자를 고려하여 설계를 수행하고 오산천 고수부지에 시험구간을 조성하여 모니터링을 수행하였다. 수위, 유속, 유량, T-N, T-P, NO3-N 등에 대한 모니터링 결과를 이용하여 제거효율을 평가하고 설계식을 제시하였다. T-N, T-P, NO3-N 등의 제거효율은 10 - 20%로 나타났으며 체류시간과 일정한 관계를 나타내고 있다. 또한 조류 형성과 유속 간의 관계를 통해 최소 유속 조건을 제시하였다. 본 연구에서 제시된 체류시간과 제거효율의 관계식은 차집수로 설계와 운영에 유용할 것으로 기대된다.

합성 금속-유기 골격체 NH2-MIL-101(Fe)를 이용한 염료의 흡착 및 광분해 제거 (Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe))

  • 이준엽;최정학
    • 한국환경과학회지
    • /
    • 제27권7호
    • /
    • pp.611-620
    • /
    • 2018
  • In this study, a metal-organic framework (MOF) material $NH_2$-MIL-101(Fe) was synthesized using the solvothermal method, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-visible spectrophotometry, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and surface area measurements. The XRD pattern of the synthesized $NH_2$-MIL-101(Fe) was similar to the previously reported patterns of MIL-101 type materials, which indicated the successful synthesis of $NH_2$-MIL-101(Fe). The FT-IR spectrum showed the molecular structure and functional groups of the synthesized $NH_2$-MIL-101(Fe). The UV-visible absorbance spectrum indicated that the synthesized material could be activated as a photocatalyst under visible light irradiation. FE-SEM and TEM images showed the formation of hexagonal microspindle structures in the synthesized $NH_2$-MIL-101(Fe). Furthermore, the EDS spectrum indicated that the synthesized material consisted of Fe, N, O, and C elements. The synthesized $NH_2$-MIL-101(Fe) was then employed as an adsorbent and photocatalyst for the removal of Indigo carmine and Rhodamine B from aqueous solutions. The initial 30 min of adsorption for Indigo carmine and Rhodamine B without light irradiation achieved removal efficiencies of 83.6% and 70.7%, respectively. The removal efficiencies thereafter gradually increased with visible light irradiation for 180 min, and the overall removal efficiencies for Indigo carmine and Rhodamine B were 94.2% and 83.5%, respectively. These results indicate that the synthesized MOF material can be effectively applied as an adsorbent and photocatalyst for the removal of dyes.

전극 간격에 따른 전기화학적 처리를 통한 폐수처리에 관한 연구 (A Study on Wastewater Treatment by Electrochemical Treatment with Various Electrode Interval)

  • 송주영
    • 한국응용과학기술학회지
    • /
    • 제36권2호
    • /
    • pp.417-423
    • /
    • 2019
  • 전기화학적 처리를 통해 합성폐수 내의 질산성 질소, 인을 제거하는 새로운 폐수처리 공정 시스템 개발을 위한 연구를 수행하였다. 전류밀도에 따른 제거율은 전류밀도가 높아질수록 질산성 질소의 높은 제거효율을 얻었고, 전극 스위칭시간에 따른 $NO_3^-$ 제거율은 스위칭 간격이 1 min일 때 높은 질산성 질소 제거효율을 얻었다. 전류밀도에 따른 총인 제거율은 전류밀도와 간격의 변화에 크게 영향을 받지 않으면서 90%이상 처리되는 것으로 나타났고, 스위칭시간(1 min간격)의 증가에 따른 총인 제거율은 증가한 것으로 나타났다. 반면 COD의 경우는 전기화학적 처리를 통해서는 처리되지 않는 것으로 나타났으며 오히려 전극이 용출되면서 증가하는 결과를 얻었다. 또한, 전극의 소모율은 스위칭 간격이 짧을수록 적은 것으로 나타났다. 최종적으로 전기화학적 처리(전류밀도 $50mA/cm^2$, 스위칭 간격 1 min, 유량 540 mL/min)를 통해 질소 98.1%, 인 90% 이상의 제거 효율을 얻을 수 있었다.

Rejection rate and mechanisms of drugs in drinking water by nanofiltration technology

  • Ge, Sijie;Feng, Li;Zhang, Liqiu;Xu, Qiang;Yang, Yifei;Wang, Ziyuan;Kim, Ki-Hyun
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.329-338
    • /
    • 2017
  • Nanofiltration (NF) technology is a membrane-based separation process, which has been pervasively used as the high-effective technology for drinking water treatment. In this study, a kind of composite polyamide NF thin film is selected to investigate the removal efficiencies and mechanisms of 14 trace drugs, which are commonly and frequently detected in the drinking water. The results show that the removal efficiencies of most drugs are quite high, indicating the NF is an effective technology to improve the quality of drinking water. The removal efficiencies of carbamazepine, acetaminophen, estradiol, antipyrine and isopropyl-antipyrine in ultrapure water are $78.8{\pm}0.8%$, $16.4{\pm}0.5%$, $65.4{\pm}1.8%$, $71.1{\pm}1.5%$ and $89.8{\pm}0.38%$, respectively. Their rejection rates increase with the increasing of their three-dimensional sizes, which indicates that the steric exclusion plays a significant role in removal of these five drugs. The adsorption of estradiol with the strongest hydrophobicity has been studied, which indicates that adsorption is not negligible in terms of removing this kind of hydrophobic neutral drugs by NF technology. The removal efficiencies of indomethacin, diclofenac, naproxen, ketoprofen, ibuprofen, clofibric acid, sulfamethoxazole, amoxicillin and bezafibrate in ultrapure water are $81{\pm}0.3%$, $86.3{\pm}0.5%$, $85.7{\pm}0.4%$, $93.3{\pm}0.3%$, $86.6{\pm}2.5%$, $90.6{\pm}0.4%$, $59.7{\pm}1.7%$, $80.3{\pm}1.4%$ and $80{\pm}0.5%$, respectively. For these nine drugs, their rejection rates are better than the above five drugs because they are negatively charged in ultrapure water. Meanwhile, the membrane surface presents the negative charge. Therefore, both electrostatic repulsion and steric exclusion are indispensable in removing these negatively charged drugs. This study provides helpful and scientific support of a highly effective water treatment method for removing drugs pollutants from drinking water.

최적 응집 효율을 위한 Al계 액상 응집제의 희석 효과 (The Predilution Effect of Al-based Liquid Coagulants for the Optimal Efficacy)

  • 허재용;이상화
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.37-43
    • /
    • 2006
  • 원수의 pH, 응집제의 주입량, 희석배수에 따라 알루미늄계 응집제(Alum, PACS, PACC)의 원수내 인과 탁질의 제거효과를 고찰하였다. 저탁도(20 NUT) 및 적정 pH 6~9하에서 알류미늄계 응집제간의 탁도 제거율의 차이는 뚜렷하게 나타나지 않았다. 그러나 인의 제거율에 있어서는 20~40 ppm의 주입량에 대해서 응집제의 염기도가 증가할수록 감소함을 알 수 있었다. Alum (0%)>PACS (45~50%)>PACC (70%), 고탁도(100 NUT) 하에서는 고분자 응집제인 PACS와 PACC의 응집성능이 단분자 응집제인 Alum보다 뛰어남을 알 수 있었다. 20 NUT의 저탁도에서 직접 주입한 경우와 비교해서, 500~2000배로 희석한 Alum의 경우에는 응집효율의 감소가 나타났으나 희석된 응집제의 체류시간이 증가함에 따라 탁도 및 인의 제거율이 증가하는 경향을 나타내주었다. 반면에 희석된 PACC의 경우에는 분산도의 증가에 기인한 응집성능의 향상이 나타났으나 희석된 응집제의 체류시간이 증가함에 따라 응집효율의 감소가 나타났다. 100 NTU의 고탁도 조건하에서는 Alum과 PACC를 희석하여 주입시 모두 응집성능이 향상됨을 알 수 있었다.

분리막 종류에 따른 하수의 생물학적 고도처리 효율 비교 연구 (Comparison of Biological Nutrient Removal Efficiencies on the Different Types of Membrane)

  • 박종부;신경숙;허형우;강호
    • 한국물환경학회지
    • /
    • 제27권3호
    • /
    • pp.322-328
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in the membrane bioreactor system with the different types of membrane. Membrane bioreactor consists of three reactors such as two intermittent anaerobic and the submerged membrane aerobic reactor with flat sheet and hollow fiber membrane, respectively. The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the flat sheet membrane bioreactor were 94.3%, 99.0%, 99.9%, 70.3% and 63.1%, respectively. In addition, The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the hollow fiber membrane bioreactor were 94.0%, 99.3%, 99.9%, 69.9% and 66.9%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR) and phosphorus removal content on the flat sheet membrane bioreactor were $0.33kgVSS/kgBOD{\cdot}d$, $0.043mgNO_3-N/mgVSS{\cdot}d$, $0.031mgNH_4-N/mgVSS{\cdot}d$, and 0.144 kgP/d, respectively. In addition, the estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR) and phosphorus removal content on the hollow fiber membrane bioreactor were $0.30kgVSS/kgBOD{\cdot}d$, $0.067mgNO_3-N/mgVSS{\cdot}d$, $0.028mgNH_4-N/mgVSS{\cdot}d$, and 0.121 kgP/d, respectively. There was little difference between the flat sheet and hollow fiber on the nutrient removal efficiencies except SNR and SDNR. These differences between them were caused by the air demand to prevent the membrane fouling. The flux and oxygen demand for air scouring were $19.0L/m^2/hr$ and $2.28m^3/min$ for the flat sheet membrane, and $20.7L/m^2/hr$ and $1.77m^3/min$ for the hollow fiber membrane on an average.

수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율 (Inorganic Nutrient Removal Efficiency of Aquatic Plants from Recirculating Aquaculture System)

  • 마진석;오승용;조재윤
    • 한국양식학회지
    • /
    • 제16권3호
    • /
    • pp.171-178
    • /
    • 2003
  • Inorganic nutrients such as nitrogen and phosphate compounds accumulate in recirculating aquaculture systems. These nutrients must be removed from the system before they affect pH and fish health. For this purpose, aquatic plants are a simple and inexpensive method of removal. There are four commonly used aquatic plants: Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce), Hygrophila angustifolia, and Hydrocotyle leucocephala in freshwater recirculating aquaculture systems in Korea, but their efficiencies are not known. Therefore, removal efficiencies of inorganic nutrients from a freshwater recirculating aquaculture water with four commonly used aquatic plants were tested. Removing efficiencies of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N of the plants in 210 L aquaria for 48-hour period were tested. The removing efficiencies of TAN, N $O_3$$^{[-10]}$ -N, and P $O_4$$^{3-}$-P of the two most effective plants, water hyacinth and water lettuce, were also tested in 690 L (surface area of 1.55 $m^2$) tanks under 2 different initial stocking densities, 4 kg and 6 kg, for 22 days. Proximate analysis major nutrients and N and P contents of the all plants were analyzed for calculating net removal weight of N and P by the plants. Water lettuce was the most effective for removing TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N from the water for 48-hour period tested followed by water hyacinth and Hygrophila angustifolia. Water lettuce reduced TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N concentration from 2.3 mg/L, 0.197 mg/L, and 21.4 mg/L to 0.4 mg/L, 0.024 mg/L and 17.4 mg/L, respectively while water hyacinth reduced them down to 0.6 mg/L, 0.029 mg/L and 17.9 mg/L, respectively. The concentrations of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N in Hydrocotyle leucocephala group were rather increased up to 3.7 mg/L, 5.7 mg/L and 48.2 mg/L, respectively. This is because the creeping stem of Hydrocotyle leucocephala had to be cut to meet stocking weight resulting in decaying of the stem in the aquaria during experiment. The net growth in weight of water hycinth and water lettuce of 4 kg each in the 1.55 $m^2$ tanks for 22 days were 9.768 kg and 10.803 kg respectively, and those at initial weight of 6 kg each were 8.393 kg and 9.433 kg, respectively. The reason of lower net growth in the later group was restricted growth space. Nitrogen and phosphorus contents in water hyacinth were 2.89% and 0.27%, and those in water lettuce were 3.87% and 0.36%, respectively. Average quantities of removed N and P from 1.55 $m^2$ tanks by water hyacinth for 22 days were 18.9 g and 1.75 g, while those by water lettuce were 36.8 g and 3.5 g, respectively. Therefore water lettuce showed much higher efficiencies for removing both N and P from recirculating aquaculture water than water hyacinth.

섬모상담체를 이용한 혐기, 무산소, 호기공정(CNR공법)의 온도변화에 따른 하수의 질소, 인의 제거특성 (Nitrogen and Phosphorus Removal of Municipal Wastewater with Temperature in CNR Process)

  • 김영규;양익배;김인배;이영준
    • 한국환경보건학회지
    • /
    • 제27권1호
    • /
    • pp.112-118
    • /
    • 2001
  • The aim of this study was to evaluate on the removal effect of total nitrogen and phosphorus in municipal wastewater with temperature change from 1$0^{\circ}C$ to 24$^{\circ}C$ in CNR(Cilia Nutrient Removal) process. CNR process is the process combining $A^2$/O process with cilium media of H2L company. The removal efficiencies for T-N were found to be 57.9% at 1$0^{\circ}C$ below, 53.7% at 10-2$0^{\circ}C$, 52.2%at 20-24$^{\circ}C$ and 44.4% over 24$^{\circ}C$ respectively. The removal efficiencies for T-P were 53.3% at 1$0^{\circ}C$ below, 59.1% at 10-2$0^{\circ}C$, 72.4% at 20-24$^{\circ}C$ and 50.0% over 24$^{\circ}C$ respectively. The specific nitrification rate (kg NH$_3$-N/kg MLSS.d) of Oxic basin was 0.088 and 0.053 at 1$0^{\circ}C$ below, 0.077 at 10-2$0^{\circ}C$, 0.097 at 20-24$^{\circ}C$ and 0.088 over 24$^{\circ}C$ respectively. The specific denitrification rate (kg NH$_3$-N/kg MLSS.d) in anaerobic and anoxic was 0.013, 0.008 respectively.

  • PDF