• Title/Summary/Keyword: removal capacity

Search Result 1,114, Processing Time 0.021 seconds

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Removal Characteristics of Styrene Vapor in the Biofilter Packed with Loess/Polyurethane Composite Media (황토/폴리우레탄 복합담체를 충전한 Biofilter에서 기상 Styrene의 제거특성)

  • Kang Kyung-Ho;Kam Sang-Kyu;Lee Taek-Kwan;Lim Sang-Bin;Lee Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1027-1033
    • /
    • 2005
  • The treatment of styrene vapor was carried out using the biofilter packed with loess/polyurethane composite during continuous operation of 74 days. The microorganisms were adapted within 2-3 days under the experimental conditions of inlet concentration and empty bed contact time (EBCT). At 200 sec of EBCT, the removal efficiency of styrene was 100\% with 200 ppmv of inlet concentration, while $92\%$ with 400 ppmv of inlet concentration. The biofilter showed the stable removal efficiencies of over $74\%$ under the EBCT range from 300 to 75 sec at the 150 ppmv of inlet styrene concentration. The maximum capacity of styrene removal for the biofilter packed with loess/polyurethane was $29g/m^3/hr$. During continuous operation of 74 days, pH of the drain water changed slightly and the pressure drop through the biofilter column was below $45\;mmH_2O/m$.

Adsorption of lisinopril and chlorpheniramine from aqueous solution on dehydrated and activated carbons

  • El-Shafey, El-Said I.;Al-Lawati, Haider A. J.;Al-Saidi, Wafa S. H.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.12-22
    • /
    • 2016
  • Date palm leaflets were used as a precursor to prepare dehydrated carbon (DC) via phosphoric acid treatment at 150℃. DC, acidified with H3PO4, was converted to activated carbon (AC) at 500℃ under a nitrogen atmosphere. DC shows very low surface area (6.1 m2/g) while AC possesses very high surface area (829 m2/g). The removal of lisinopril (LIS) and chlorpheniramine (CP) from an aqueous solution was tested at different pH, contact time, concentration, and temperature on both carbons. The optimal initial pH for LIS removal was 4.0 and 5.0 for DC and AC, respectively. However, for CP, initial pH 9.0 showed maximum adsorption on both carbons. Adsorption kinetics showed faster removal on AC than DC with adsorption data closely following the pseudo second order kinetic model. Adsorption increases with temperature (25℃–45℃) and activation energy (Ea) is in a range of 19–25 kJ mol/L. Equilibrium studies show higher adsorption on AC than DC. Thermodynamic parameters show that drug removal is endothermic and spontaneous with physical adsorption dominating the adsorption process. Column adsorption data show good fitting to the Thomas model. Despite its very low surface area, DC shows ~70% of AC drug adsorption capacity in addition of being inexpensive and easily prepared.

Removal of aqueous heavy metals (Pb, Cu, Zn, Cd) by scoria from Jeju, Korea

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.380-383
    • /
    • 2004
  • Heavy metal release from wastewater is a serious environmental problem, and therefore, various wastewater treatment techniques have been developed. Among the techniques, sorption technique is most attractive. Considerable researches have been recently focused on finding out inexpensive sorbents, especially from various natural materials. In order to evaluate the applicability of the scoria taken from the Jeju Island, Korea to remove heavy metals (Pb, Cu, Zn, Cd) from aqueous solutions, equilibrium sorption experiments were conducted in this study. In equilibrium tests, powdered activated carbon (PAC), one of the most commonly used sorbents, was also tested to compare the effectiveness of the Jeju scoria with that of PAC. The Jeju scoria had larger adsorption capacity and affinity for metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) than PAC. The sorption parameters of the two sorbents were evaluated by using both the Langmuir and Freundlich isotherms, and the sorption data were better fitted to the Freundlich isotherm. In addition, the sorption behavior of metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) onto the scoria displayed a typical characteristic of the cation sorption. The removal of metal ions decreased at a lower pH condition due to competition with hydrogen ions for the sorption sites of Jeju scoria, while the removal increased at a high pH condition due to hydroxide precipitation.

  • PDF

Identification of Hydrophobic Components in Cambodian Kapok Fiber (캄보디아산 케이폭 섬유의 소수성에 영향을 미치는 성분규명)

  • Sung, Yong Joo;Yun, Su-Young;Oh, Sung-Hoon;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.30-36
    • /
    • 2013
  • Hydrophobic property of Kapok fiber was investigated by sequential removal of its components by different extraction methods. Acetone extraction for the removal of the hydrophobic extractives, holo-cel-lulose preparation after the removal of lignin and xylan extraction by potassium hydroxide was applied. The degree of hydrophobicity of each samples were measured by the water sorption ability. The water sorption ability of Kapok fiber was increased by the sequential treatment of acetone extraction, holocellulose preparation and xylan removal. Based on holocellulose compositional analysis by $^1H$-NMR spectroscopic method, the unusual high amount of the acetyl groups in the holocellulose of Kapok partially contributed to the hydrophobicity of Kapok holocellulose fiber.

Basic Study for Development of Denitrogenation Process by ion Exchange(II) (이온교환법에 의한 탈질소 공정개발의 기초연구(II))

  • 이민규;주창식
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Ion exchange performance to remove nitrate in water was studied using commercially available strong base anion exchange resin of Cl- type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium conquilibrium between resin and solution. Anion exchange resin used in this study was more effective than activated carbon or zeolite for nitrate removal. With large resin amount or low initial concentration, nitrate removal characteristics for a typical gel-type resin was Increased. On considering the relation between the breakthrough capacity and nitrate concentration of the influent, the use of anion exchange resin were suitable for the hi선or order water treatment. The nitrate removal of above 90% could be possible until the effluent of above 650 BV was passed to the column. Thus, the commercially available strong base anion exchange resin of $Cl^-$ type used in thins study could be effectively used as economic material for treatment of the groundwater. The breakthrough curves showed the sequence of resin selectivity as $SO_4^{2-}$ > $NO_3$ > $NO^{2-}$ > $HCO_3^-$. The results of this study could be scaled up and used as a design tool for the water purification system of the real groundwater and surface water treatment processes.

  • PDF

Removal of Malodorous Gases from Swine Manure by a Polyurethane Biofilter Inoculated with Heterotrophic and Autotrophic Bacteria. (종속영양세균과 독립영양세균을 고정화한 Polyurethane Biofilter의 돈분뇨 악취제거)

  • 이연옥;조춘구;류희욱;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.91-97
    • /
    • 2002
  • Removal of malodorous gases from swine manure by a polyurethane biofilter inoculated with heterotrophic and autotrophic bacteria was investigated. Ammonia, hydrogen sulfide and other gases could be efficiently treated at 3~3.6 second of empty bed retention time by the polyurethane biofilter. In the range of SV $200~l,200h^{-1}$ , the average removal efficiency of odor was about 89% when the odor unit of inlet gas was below 4100. Odor elimination capacity of the polyurethane biofilter was$ 1.8$\times$10^{5}$ $~5.0$\times$10^{7}$OUㆍm$^{-3}$$h^{-1}$ that were 84~90% of the inlet load. The critical loads of $NH_3$ and $H_2$S, which mean 97% removal with respect to the inlet loads, were 31 and $27 g.m^{-3}$$h^{-1}$ , respectively. The maximum elimination capacities of $NH_3$ and $H_2$S were 56 and $157 gㆍm^{-3}$ ㆍh$^{-1}$ , respectively. Although the removability for$ NH_3$ and $H_2$S was not influenced by $H_2$S$NH_3$ ratio (ppmv/ppmv), the $H_2$S removability was inhibited by high $H_2$S concentration more than 80 ppmv.

The Removal of Hexavalent Chromium from Aqueous Solutions Using Modified Holly Sawdust: Equilibrium and Kinetics Studies

  • Siboni, M. Shirzad;Samarghandi, M.R.;Azizian, S.;Kim, W.G.;Lee, S.M.
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • The removal of hexavalent chromium from aqueous solutions onto modified holly sawdust was studied at varying initial hexavalent chromium concentrations, adsorbent doses, pHs and contact times. The removal of hexavalent chromium from aqueous solutions increased with increasing adsorbent dosage and contact time. The percentage of hexavalent chromium removed from the aqueous solutions decreased with increasing hexavalent chromium concentration and pH of the solution. The kinetics of the adsorption of hexavalent chromium onto modified holly sawdust was analyzed using pseudo first-order and pseudo second-order models. The pseudo second-order model described the kinetics of adsorption of hexavalent chromium. The Langmuir and Freundlich isotherm models were used for modeling of the adsorption equilibrium data. The Langmuir isotherm model well described the equilibrium data for the removal of hexavalent chromium by modified holly sawdust. The obtained maximum adsorption capacity was 18.86 mg/g at pH 7. The results showed that modified holly sawdust can be used as a low cost adsorbent for the treatment of aqueous solutions containing chromium.

Equilibrium and kinetic studies on the adsorption of copper onto carica papaya leaf powder

  • Varma V., Geetha;Misra, Anil Kumar
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.403-416
    • /
    • 2016
  • The possibility of using carica papaya leaf powder for removal of copper from wastewater as a low cost adsorbent was explored. Different parameters that affect the adsorption process like initial concentration of metal ion, time of contact, adsorbent quantity and pH were evaluated and the outcome of the study was tested using adsorption isotherm models. A maximum of 90%-94.1% copper removal was possible from wastewater having low concentration of the metal using papaya leaf powder under optimum conditions by conducting experimental studies. The biosorption of copper ion was influenced by pH and outcome of experimental results indicate the optimum pH as 7.0 for maximum copper removal. Copper distribution between the solid and liquid phases in batch studies was described by isotherms like Langmuir adsorption and Freundlich models. The adsorption process was better represented by the Freundlich isotherm model. The maximum adsorption capacity of copper was measured to be 24.51 mg/g through the Langmuir model. Pseudo-second order rate equation was better suited for the adsorption process. A dynamic mode study was also conducted to analyse the ability of papaya leaf powder to remove copper (II) ions from aqueous solution and the breakthrough curve was described by an S profile. Present study revealed that papaya leaf powder can be used for the removal of copper from the wastewater and low cost water treatment techniques can be developed using this adsorbent.

Removal of Manganese(II) from Aqueous Solution Using Manganese Coated Media (망간코팅 여재를 이용한 수용액상의 망간 제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.454-459
    • /
    • 2010
  • This study investigated the applicability of manganese coated media such as manganese coated sand (MCS), manganese coated sericite (MCSe) and manganese coated starfish material calcined at $550^{\circ}C$ (MCSf) to remove Mn(II) in synthetic wastewater. Manganese coated media prepared at different pH was applied in the treatment of soluble Mn(II) in batch and column experiments at various Mn(II) concentrations. The amount of Mn coated on three different media was approximately 800~1100 mg/kg. From the stability test, negligible dissolution of Mn was observed above pH 3.0. In batch test, more than 40% of Mn(II) was removed by all sand media at various manganese concentrations. In order to see the effect of additional oxidant for the removal of Mn(II), 4 mg/L of hypochlorite was added in Mn(II) solution during column experiment. Breakthrough of Mn(II) was greatly retarded in the presence of hypochlorite in all column reactors packed with different media. Among the manganese coated media, MCSf prepared at pH 4 indicated the highest removal capacity. The removal efficiency of Mn(II) was also increased in the multi-layer system (0.5 g of MCS, MCSe, and MCSf each).