• Title/Summary/Keyword: remote sensor data management system

Search Result 78, Processing Time 0.021 seconds

Design of an In-vehicle Intelligent Information System for Remote Management (차량 원격 진단 및 관리를 위한 차량 지능 정보시스템의 설계)

  • Kim, Tae-Hwan;Lee, Seung-Il;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1023-1026
    • /
    • 2005
  • In the ubiquitous computing environment, an intelligent vehicle is defined as a sensor node with a capability of intelligence and communication in a wire and wireless network space. To make it real, a lot of problems should be addressed in the aspect of vehicle mobility, in-vehicle communication, common service platform and the connection of heterogeneous networks to provide a driver with several intelligent information services beyond the time and space. In this paper, we present an intelligent information system for managing in-vehicle sensor network and a vehicle gateway for connecting the external networks. The in-vehicle sensor network connected with several sensor nodes is used to collect sensor data and control the vehicle based on CAN protocol. Each sensor node is equipped with a reusable modular node architecture, which contains a common CAN stack, a message manager and an event handler. The vehicle gateway makes vehicle control and diagnosis from a remote host possible by connecting the in-vehicle sensor network with an external network. Specifically, it gives an access to the external mobile communication network such as CDMA. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixed place, 707ms at rural area and 910ms at urban area.

  • PDF

A Real-time Monitoring Agent Design for Digital Twin-based Smart Pipe Integrated Management System (디지털 트윈 기반 스마트 파이프 통합 관리 시스템을 위한 실시간 모니터링 에이전트 설계)

  • Hong, Phil-Doo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.292-294
    • /
    • 2021
  • The digital twin-based smart pipe integrated management system is an integrated solution for efficient operation and monitoring that we propose. We buried a waterway pipe underground with self-diagnostic and condition monitoring sensor functions. This pipe sends sensing data and accumulates it. Our system analyzes data to make smart decisions. The main functions of this system are remote control and monitoring. Therefore, "how to configure monitoring in real time" is a big issue. For this purpose, we designed a special real-time-based agent function. In this paper, to solve this problem, a layered architecture was proposed based on transmission points where sensor data are exchanged. An agent was placed in each layer to look at the lower layer and periodically monitor whether there were any changes in the sensor in real time. Finally, the agent system was designed and the conceptual model level was implemented to verify excellence.

  • PDF

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

Design of Multi-node Real-time Diagnostic and Management System Using Zigbee Sensor Network (Zigbee 센서 네트워크를 활용한 다중노드 실시간 진단 및 관리시스템 설계)

  • Kang, Moonsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.152-161
    • /
    • 2014
  • In this paper, a multi-node real-time diagnostic and management system based on zigbee sensor network is proposed, which is to monitor and diagnose multiple nodes as well as to control the data generated from the various multiple sensors collectively. The proposed system is designed to transmit the collected wireless and wired data to the server for monitoring and controling efficiently the condition for multi-nodes by taking the corresponding actions according to the analysis. The system is implemented to make it possible to manage the sensor data by classifying them, of which data are issued from the clustered sources with a number of the remote sensors. In order to evaluate the performance of the proposed system, we measure and analyze both the transmission delay time according to the distance and the data loss rate issued from multiple sensors. The results shows that the proposed system has a good performance.

Distributed IoT Sensor based Laboratory Safety Management System (분산 IoT센서 기반 실험실 안전관리 시스템)

  • Jeong, Daejin;Kim, Jaeyoon;Bae, Sangjung;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • Storage cabinet in a lab in these days measures various environmental factors in real-time with IoT sensors. Preexisting system collects sensor data, analyze a risk and then command other equipment. Such centralized control system tends to have an issue with of speed slowing down. It's because when there are more storage cabinets, there are more data to process. In order to solve this issue, this report addresses decentralized IoT sensor based lab safety control system. It can analyze internal state of storage cabinet to identify any hazardous situations and effectively control them. Such decentralized control system using sensor modules for internal environment of the cabinet storage and automated control algorithm based on administrator's log history can manage any hazardous situations by automated control of environment factors of inside a lab. It would allow users to deal with a hazard if it happens. Even better, it can prevent it to happen from the beginning.

Application of Mobile Mapping System for Effective Road Facility Maintenance and Management (효율적인 도로 시설물 유지관리를 위한 모바일 매핑 시스템 활용에 관한 연구)

  • Kim, Moon-Gie;Sung, Jung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.153-164
    • /
    • 2008
  • According to the economic growth, many highways are constructed for increasing need of better life style. Especially roads and roadside facilities are used for accident prevention and offering mobility for drivers. For these purpose, roads and roadside facilities should be well maintained and managed. Now, many roads and roadside facilities are constructed in many areas. Because of traditional surveying method requires much time and surveying efforts, we designed and developed mobile mapping system for highway maintenance and management purpose using multi sensors. We tested our mobile mapping system and data management process. Using developed database, road managers can easily check the information of facility conditions, positions, and attributes. We are expecting low cost and efficient road maintenance process by using our system.

A Design of Sensor Web service Framework for Wireless Sensor Networks Environment (무선 센서 네트워크 환경에 대한 센서 웹 서비스 프레임워크의 설계)

  • Kim, Yong-Tae;Jeong, Yoon-Su;Park, Byung-Joo;Park, Gil-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.123-131
    • /
    • 2009
  • In this paper, we design ZigBee RF based framework for mobile web service on collected data by sensor node and transmitting data to data base by sensor network and remote sensing server through wireless connection. The proposed system is an integrated platform of sensor network for the sensor management and providing SOA based sensor web access. This paper combines SOA technology with sensor network. composes sensor node as web view, and provides high capability. extensiveness, reliability, and usability to the user who accesses to sensor web. The mobile message conversion module, SOAP message processing module. WSDL message generator, and mobile web service module is embodied for improving the capacity of the framework. The capacity evaluation of local wireless communication system which is proposed in this paper is analyzed through NS-2 simulation.

Solar Energy Powered Bicycle for Wireless Supervisory Control and Remote Power Management Applications

  • Chao, Chung-Hsing
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2012
  • In this paper, a solar energy powered bicycle linked to a wireless sensor network (WSN) which monitors the transfer of solar energy to an electrical energy storage unit and an analysis of its effectiveness is proposed. In order to achieve this goal, a solar-powered bicycle with an attached ZigBee and a far-end wireless network supervisory system is setup. Experimental results prove that our prototype, solar energy powered bicycle, can achieve enough solar energy for charging a two lead-acid battery pack. As a result, the user, through use of a wireless network in the parking period can be kept aware of the data on the amount of immediate solar radiation, the degree of illumination, the ambient temperature, and electrical energy storage capacity information of the bicycle through an internet interface.

Implementation of a Remote Bio-Equipment System for Smart Healthy Housing Properties

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.23-29
    • /
    • 2014
  • It is essential to investigate the structure and the main characteristics of BSN (Bio-Sensor Network) platform in built smart healthcare environment while designing healthy housing facilities. For this study, WSN (Wireless Sensor Network) data transmission technologies have been employed with medical sensors, and optimal medical devices would provide various Web 2.0 services by connecting to the WiBro network. The BSN platform normally recognizes in surroundings of WBAN (Wireless Body Area Network) or WPAN (Wireless Personal Area Network), and it is possible to manage sensor nodes by utilizing SOAP (Simple Object Access Protocol) and REST (REpresentational State Transfer). In addition, the feature of SNMP (Simple Network Management Protocol) for mobile gateway is also included for being adapted to huge network structure. Finally, BSN platform will play a role as important clues for developing personal WSN service models for smart healthy housing properties.

WSN-based Coastal Environment Monitoring System Using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 WSN 기반의 연안 환경 모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Chang-Hee;Ock, Young-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • The rapid water pollution in stream, river, lake and sea in recent years raises an urgent need for continuous monitoring and policymaking to conserve the global clean environment. In particular, the increasing water pollution in coastal marine areas adds to the importance of the environmental monitoring systems. In this paper, the mobile server is designed to gathers information of the water quality at coastal areas. The obtained data by the server is transmitted from field servers to the base station via multi-hop communication in wireless sensor network. The information collected includes dissolved oxygen(DO), hydrogen ion exponent(pH), temperature, etc. By the information provided the real-time monitoring of water quality at the coastal marine area. In addition, wireless sensor network-based flooding routing protocol was designed and used to transfer the measured water quality information efficiently. Telosb sensor node is programmed using nesC language in TinyOS platform for small scale wireless sensor network monitoring from a remote server.