• 제목/요약/키워드: remote sensing of fluxes

Search Result 32, Processing Time 0.017 seconds

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.