• Title/Summary/Keyword: remote robot control

Search Result 326, Processing Time 0.028 seconds

The improvement of MIRAGE I robot system (MIRAGE I 로봇 시스템의 개선)

  • 한국현;서보익;오세종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.605-607
    • /
    • 1997
  • According to the way of the robot control, the robot systems of all the teams which participate in the MIROSOT can be divided into three categories : the remote brainless system, the vision-based system and the robot-based system. The MIRAGE I robot control system uses the last one, the robot-based system. In the robot-based system the host computer with the vision system transmits the data on only the location of the ball and the robots. Based on this robot control method, we took part in the MIROSOT '96 and the MIROSOT '97.

  • PDF

The Development of a Miniature Humanoid Robot System (소형 휴머노이드 로봇 시스템 개발)

  • Sung, Young-Whee;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.420-426
    • /
    • 2001
  • In this paper, we introduce a case study of developing a miniature humanoid robot that has 16 degrees of freedom and is able to perform statically stable walking. The developed humanoid robot is 37cm tall and weighs 1,200g. RC servo motors are used as actuators. The robot can walk forward and turn to any direction on an even surface. It equipped with a small digital camera, so it can transmit vision data to a remote host computer via wireless modem. The robot can be operated in two modes: One is a remote-controlled mode, in which the robot behaves according to the command given by a human operator through the user-interface program running on a remote host computer, the other is a stand-alone mode, in which the robot behaves autonomously according the pre-programmed strategy. The user-interface program also contains a robot graphic simulator that is used to produce and verify the robot\`s gait motion. In our walking algorithm, the ankle joint is mainly used for balancing the robot. The experimental results shows that the developed robot can perform statically stable walking on an even surface.

  • PDF

Development of a remote controlled mobile robot system for monitoring nuclear power plant (원전 이동감시 및 방사선 측정용 원격조종 로봇 개발)

  • 구관모;이범희;우희곤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.511-515
    • /
    • 1996
  • A remote controlled mobile robot system has been developed and tested to monitor the radiation area in the nuclear power plant. The mobile robot system operates according to car-driving-like commands and is capable of radiation measurement and visual inspection in unmanned situations under radiation. The robot system is equipped with a radiation sensor and two cameras with appropriate illumination set-ups. The camera with auto-focus function and 8-times zoom lens is mounted on the pan/tilt rotational base and the other is mounted on the front panel of the robot system. All commands regarding the motion of the mobile robot and various sensors are given through the monitoring system which is designed to provide an integrated man-machine interface.

  • PDF

PDA-based Supervisory Control of Mobile Robots (PDA를 이용한 이동로봇 제어)

  • 정성호;김성주;김용택;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.105-108
    • /
    • 2002
  • This paper represents the mobile robot control system remote controlled by PDA(personal digital assistance). So far, owing to the development of internet technologies, lots of remote control methods through internet have been proposed. To control a mobile robot through internet and guide it under unknown environment, We propose a control method activated by PDA. In a proposed system, PDA acts as a user interface to communicate with notebook as a controller of the mobile robot system using TCP/IP protocol, and the notebook controls the mobile robot system. The information about the direction and velocity of the mobile robot feedbacks to the PDA and the PDA send new control method produced from the fuzzy inference engine.

  • PDF

Design of Remote Manipulator Control System using PHANToM Device (PHANToM Device 를 이용한 다관절 로봇의 원격제어 시스템 설계)

  • 김현상;김미경;강희준;서영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.241-245
    • /
    • 2004
  • This paper shows the development of remote control system for manipulators which consists of PHANToM Device as a master, Samsung FARA robot as a slave and TCP/IP based LAN for their Communication. This work includes the motion mapping between the master and the slave, Generation of virtual viscosity force preventing operator s unwilled action and 3D remote control simulators for the stable operation of the remote control system, etc. The remote control implementation has been performed and the results shows that the developed system can allow the operator to effectively control the manipulator.

  • PDF

Study of iPhone Interface for Remote Robot Control Based on WiFi Communication (WiFi 통신 기반의 로봇제어를 위한 아이폰 인터페이스 연구)

  • Jung, Hah-Min;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.669-674
    • /
    • 2012
  • This study presents the remote control of a mobile robot using iPhone based on Wi-Fi communication. The paper proposes the following set of user interfaces : acceleration mode, arrow touch mode, and jog-shuttle mode. To evaluate the proposed three interfaces, a virtual robot is controlled in a monitor to follow a referenced trajectory using iPhone. In simulation, the standard deviation and summed errors are analysed for showing good and weak points of the proposed three interfaces. The proposed interface replace an additional remote controller requiring cost with a cellular phone. Results of an experiment show that the proposed interfaces can be effectively used for remote robot control.

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

Development of Master-slave System for Robot-assisted Remote Ultrasound Diagnosis (로봇 지원 원격 초음파 영상진단을 위한 마스터-슬레이브 시스템의 개발)

  • Seo, Joonho;Cho, Jang Ho;Kwon, Ohwon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • In this paper, we introduce a robot-assisted medical diagnostic system that enables remote ultrasound (US) imaging to be applied to the conventional telemedicine, which has been possible only with interviewing or a visual exam. In particular, a master-slave robot system is developed that ultrasonic diagnosis specialist can control the position and orientation of US probe in the remote place. The slave robot is designed to be compact, lightweight, and hand-held so that it can easily transfer to the remote healthcare center. Moreover, 6-degree-of-freedom (DOF) probe motion is possible by the robot design based on Stewart platform. The master device is also based on a similar structure of the slave robot. To connect master and slave system in the wide area network (WAN) environment, a hardware CODEC was developed. In this paper, we introduce the detail of each component and the results of the recent experiments conducted in the remote sites by the developed robotic ultrasound imaging system.

Implementation of Tele-Robot System for Remote Home-Management (원격 가정 관리용 텔레로봇 시스템 구현)

  • 윤창배;김형석;채희성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2779-2782
    • /
    • 2003
  • A tole-robot system for remote home-management has been developed. The tele-robot system is composed of a mobile robot system, server-computers and client-computers. The robot system is equipped with wireless camera and wireless controller so that the robot system captures the image remotely User makes the robot control command referring to the image feedback through internet. With such tole-robot system, the user can monitor and watch the inside of home by remotely maneuvering the mobile robot. The user can also save the received image of suspected scene on the client computer. Utilizing such function of tele-robot system, remote home-management and possible crime avoidance could be achieved.

  • PDF

The Development of Remote Monitoring Technology for URC Robot (URC 로봇 원격 모니터링기술 개발)

  • Kim Joo-Man
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.8
    • /
    • pp.8-19
    • /
    • 2006
  • In the ubiquitous environment, the real-time remote control and monitoring technology for intelligent robot creates service as a sharable and independent of time-location for various contents to get from a sensor or camera of the robot. In this paper, We propose the real-time monitor and control mechanism for intelligent robot called URC(Ubiquitous Robotic Companion). URC are intelligent robots designed as to interact with external digital device that can communicate through wire or wireless by integration the network and information technology into traditional robot. It has been carried out by implementing this technology into the target robot called ISSAC4 and proving its practical worth. We designed feasibly to control on remote site by web-browser. It guarantees a continuity of real-time image transferring by Client-Pull method.

  • PDF