• Title/Summary/Keyword: remediation efficiency

Search Result 328, Processing Time 0.023 seconds

계면활성제를 이용한 토양내 유기오염물 (NAPL) 정화 방법의 연구

  • 이민희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.96-98
    • /
    • 2000
  • Column experiments were peformed to evaluate the efficiency of surfactant flushing for remediation of non-aqueous phase liquid (NAPL) in the soil under controlled conditions. In column experiment less than 0.1 % of the original mass of tetrachloroethylene (PCE), remained in the column after 15 pore volumes of 1% sorbitan monooleate solution were passed through columns. To determine the influence of soil parameters that may affect the remediation process, column tests were repeated with different values of grain size, application rate, surfactant type, surfactant concentration, and solution viscosity (polymer mixed with surfactant). Experimental works suggest that surfactant flushing has a great potential to rapidly remove mass from NAPL in the soil.

  • PDF

Enhanced Electrokinetic remediation of low permeability soil contaminated with phenanthrene (Phenanthrene으로 오염된 저투수성 지반의 향상된 Electrokinetic 정화 처리)

  • 김강호;한상재;김수삼
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2002
  • In this study, electrokinetic remediation tests were performed with spiked fine-grained soil by phenanthrene which is representative hydrophobic organic contaminant of petroleum hydrocarbon. And also, the enhanced method was used with surfactant concentration variation and elapsed time to achieve more higher removal efficiency than conventional electrokinetic treatment. In conventional electrokinetic treatment, most phenanthrene was not transported. But, in the enhanced method used by the surfactant, phenanthrene moved form anode to cathode region and accumulated in cathode region. Also, the transportation rate of phenanthrene was increased with surfactant concentration increasement and elapsed time.

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

Influence of Co-Surfactants to Surfactant-Enhanced Remediation of Diesel-Contaminated Sandy Soil

  • 김종성;김우정;이은영;이기세
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.149-152
    • /
    • 2000
  • The effects of selected co-surfactants on diesel removal from sandy soil were studied to increase diesel recovery from the soil by the surfactant-enhanced remediation of diesel-contaminated soil. The capability of co-surfactant for enhancing removal efficiency can be related with the interaction between its structural character and the structural peculiarity of nonionic surfactant. In the case of Tween 80, hexanol showed the great improvement in diesel recovery. Efficiency of diesel recovery decreased as hydrocarbon chain length of cosurfactant decreased. Higher content of hexanol further increased diesel recovery, but there was no significant improvement in the case of butanol and pentanol.

  • PDF

Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal (우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안)

  • Park, Hye-Min;Kim, Gye-Nam;Kim, Seung-Soo;Kim, Wan-Suk;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • The original pilot-scale electrokinetic equipment suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During the experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathode plate. The uranium removal capability of the original electrokinrtic equipment was almost exhausted because the cathode plate covered with metal oxides did not conduct electricity in the original electrokinetic equipment. Therefore, the original electrokinetic equipment was improved. After the remediation experience for 25 days using the improved electrokinetic remediation equipment, the removal efficiency of uranium from the soil was 96.8% and its residual uranium concentration was 0.81 Bq/g. When the initial uranium concentration of soil was about 50 Bq/g, the electrokinetic remediation time required to remediate the uranium concentration below clearance concentration of 1.0 Bq/g was about 34 days. When the initial uranium concentration of soil was about 75 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 42 days. When the initial uranium concentration of soil was about 100 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 49 days.

A Continuous Process of Persulfate Oxidation and Citric acid Washing for the Treatment of Complex-Contaminated Soil Containing Total Recoverable Petroleum Hydrocarbons and Heavy Metals (TRPHs - 중금속 복합오염토양의 동시 처리를 위한 과황산 산화 - 구연산 세척 혼성공정 개발)

  • Yoon, Na Kyeong;Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • A continuous process of persulfate oxidation and citric acid washing was investigated for ex-situ remediation of complex contaminated soil containing total recoverable petroleum hydrocarbons (TRPHs) and heavy metals (Cu, Pb, and Zn). The batch experiment results showed that TRPHs could be degraded by $Fe^{2+}$ activated persulfate oxidation and that heavy metals could be removed by washing with citric acid. For efficient remediation of the complex contaminated soil, two-stage and three-stage processes were evaluated. Removal efficiency of the two-stage process (persulfate oxidation - citric acid washing) was 83% for TRPHs and 49%, 53%, 24% for Cu, Zn, and Pb, respectively. To improve the removal efficiency, a three-stage process was also tested; case A) water washing - persulfate oxidation - citirc acid washing and case B) persulfate oxidation - citric acid washing (1) - citric acid washing (2). In case A, 63% of TRPHs, 73% of Cu, 60% of Zn, and 55% of Pb were removed, while the removal efficiencies of TRPHs, Cu, Pb, and Zn were 24%, 68%, 62%, and 59% in case B, respectively. The results indicated that case A was better than case B. The three-stage process was more effective than the two-stage process for the remediation of complex-contaminated soil in therms of overall removal efficiency.

Methane Recovery and Performances of Full-scale Two-stage Anaerobic Process Treating Piggery Wastewater (양돈폐수처리시 실규모 이단 혐기성공정의 성능 및 메탄회수)

  • Jung, Jin-young;Chung, Yun-chul;Kang, Shin-hyun;Chung, Hyung-sook
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.256-262
    • /
    • 2005
  • The purpose of this study is to investigate the performances of organic removal and methane recovery by using a full scale two-phase anaerobic system. The full scale two-phase anaerobic process was consists of an acidogenic anaerobic baffled reactor (ABR) and a methanognic upflow anaerobic sludge blanket (UASB) reactor. The volumes of acidogenic and methanogenic reactors were designed to $28.3m^3$ and $75.3m^3$. The two-phase anaerobic system represented 60-82% of COD removal efficiency when the influent COD concentration was in the range of 7,150 to 16,270 mg/L after screening (average concentration is 10,280 mg/L). After steady-state, the effluent COD concentration in the methanogenic reactor showed $2,740{\pm}330 mg/L$ by representing average COD removal efficiency was $71.4{\pm}8.1%$ when the operating temperature was in the range of $19-32^{\circ}C$. The effluent SCOD concentration was in the range of 2,000-3,000 mg/L at the steady state while the volatile fatty acid concentration was not detected in the effluent. Meanwhile, the COD removal efficiency in the acidogenic reactor showed less than 5%. The acidogenic reactor played key roles to reduce a shock-loading when periodic shock loading was applied and to acidify influent organics. Due to the high concentration of alkalinity and high pH in the effluent of the methanogenic reactor, over 80% of methane in the biogas was produced consistently. More than 70% of methane was recovered from theoretical methane production of TCOD removed in this research. The produced gas can be directly used as a heat source to increase the reactor temperature.

Removal of Heavy Metal Contaminants from Cohesive Soil by Electrokinetics (Electrokinetic 기술에 의한 점성토의 중금속 오염물 제거)

  • 정하익;강병희
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.123-138
    • /
    • 1997
  • Electroosmotic tests were performed on saturated marine clay specimens contaminated with lead to investigate the efficiency of the electrokinetic technique for removal of heavy metals from the cohesive soils. For this purpose, testing program included variable conditions such as the concentration of lead (500, 5, 000, 50, 000mg/kg), the level of electrical current (10, 50, 100 mA), operating duration (5, 15, 30days), and the application of three dirtferent chemicals for enhancement in efficiency. The pH of inflow and outflow, electroosmotic flow and electrical conductivity during the test, and the pH and the concentration of lead across the specimen after the test are presented. Test results came to the conclusion that the electrokinetic technique was very effective to remove heavy metals such as lead from the contaminated cohesive soil. Adding ecetic acid at the cathod to dissolve the procipitates of lead hydroxide as found to be effective for the enhancement of the efficiency in remediation.

  • PDF

Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation (지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가)

  • Kim, Ho-Rim;Kim, Kyoung-Ho;Yun, Seong-Taek;Hwang, Sang-Il;Kim, Hyeong-Don;Lee, Gun-Taek;Kim, Young-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.

Microcosm Experiment for Evaluating Efficiency of Chemical Amendments on Remediation of Heavy Metal Contaminated Soil

  • Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Yang, Jae E.;Ji, Won Hyun;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • Heavy metal pollution in agricultural field near the abandoned metal mines is a critical problem in Korea. General remediation technique is to apply chemical amendments and soil covering. However, there is no specific guidelines for conducting soil covering. Therefore, main objective of this research was to determine optimum soil covering technique with microcosm experiment. Three different chemical amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge (AMDS), were examined and varied soil covering depth, 20, 30, 40cm, was applied to determine optimum remediation technique. Bioavailable heavy metal concentration in soil and total concentration of heavy metals in crop were monitored. Result showed that average heavy metal concentration in varied soil covering depth was ordered as 40 cm ($14.5mg\;kg^{-1}$) < 20 cm ($14.6mg\;kg^{-1}$) < 30 cm ($16.0mg\;kg^{-1}$) and also heavy metal concentration in crop was ordered as 40 cm ($100{\mu}g\;kg^{-1}$) < 30 cm ($183{\mu}g\;kg^{-1}$) < 20 cm ($190{\mu}g\;kg^{-1}$). In terms of chemical amendments, average heavy metal concentration was decreased as AMDS ($150{\mu}g\;kg^{-1}$) < SS ($151{\mu}g\;kg^{-1}$) < LS ($154{\mu}g\;kg^{-1}$). Overall, depth of soil covering should be over 30 cm to minimize bioaccumulation of heavy metals and SS and LS could be applied in heavy metal contaminated soil for remediation purposes.