• Title/Summary/Keyword: remediation efficiency

Search Result 328, Processing Time 0.024 seconds

The Fundamental Study on th e Soil Remediation for Copper Contaminated Soil using Nanobubble Water (나노버블수에 의한 구리 오염 토양의 정화에 관한 기초 연구)

  • Jeong, So-Hee;Kim, Dong-Chan;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The fundamental study for an application of nanobubble as a soil remediation enhancer on heavy metal contaminated soil was carried out. The existence and long-term stability of hydrogen nanobubbles were investigated by particle analysis and zeta-potential analysis. And the removal efficiency of copper using nanobubble water(NBW) and distilled water(DW) were compared and analyzed through a batch desorption test. As a result, it is confirmed that nanobubble which was fabricated by compression-dissolution type generator can exist for more than 14 days. The results of batch test show that copper removal of NBW was higher than that of DW irrespectively to soil type and increased as solid-liquid ratio and contact time increased, respectively. According to the pH change, the removal of copper on sand was higher on the acid side but the removal difference was slightly lower on the clay. It is considered that a high efficiency of NBW in copper removal is due to the large surface area and high zeta-potential of nanobubbles. Therefore, the nanobubble can be applied to soil remediation for heavy-metal contaminated soil as an eco-friendly enhancer.

Foams for Aquifer Remediation: Two Flow Regimes and Its Implication to Diversion Process

  • Kam, Seung-Ihl;Jonggeun Choe
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Foam reduces the mobility of gas phase in porous media to overcome gravity override and to divert acid into desired layers in the petroleum industry and to enhance the efficiency of environmental remediation. Recent experimental studies on foam show that foam exhibits a remarkably different flow rheology depending on the flow regime. This study, for the first time, focuses on the issues of foam diversion process under the conditions relevant to groundwater remediation, combining results from laboratory linear-flow experiments and a simple numerical model with permeability contrasts. Linear flow tests performed at two different permeabilities (k = 9.1 and 30.4 darcy) confirmed that two flow regimes of steady-state strong foams were also observed within the permeability range of shallow geological formations. Foam exhibited a shear-thinning behavior in a low-quality regime and near Newtonian rheology in a high-quality regime. Data taken from linear flow tests were incorporated into a simple numerical model to evaluate the efficiency of foam diversion process in the presence of permeability contrasts. The simple model illustrated that foam in the high-quality regime exhibited a successful diversion but foam in the low-quality regime resulted in anti-diversion, implying that only foam in the high-quality regime would be applicable to the diversion process. Sensitivity study proved that the success of diversion process using foam in the high-quality regime was primarily controlled by the limiting capillary pressures (${P_c}{^*}$) of the two layers of interest. Limitations and implications are also discussed and included.

TPH Removal of the Biodegradation Process Using 4 Indigenous Microorganisms for the Diesel Contaminated Soil in a Military Camp (디젤로 오염된 군부대 토양에 대하여 토착미생물 4종을 이용한 생분해법의 TPH 제거 효율 규명)

  • Park, Min-Ho;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2012
  • Batch experiments using indigenous and commercialized adventive microorganisms were performed to investigate the feasibility of the biodegradation process for the diesel contaminated soil, which was taken in US Military Camp 'Hialeah', Korea. TPH concentration of the soil was determined as 3,819 mg/kg. Four indigenous microorganisms having high TPH degradation activity were isolated from the soil and by 16S rRNA gene sequence analysis, they were identified as Arthrobacter sp., Burkholderia sp., Cupriavidus sp. and Bacillus sp.. Two kinds of commercialized solutions cultured with adventive microorganisms were also used for the experiments. Various biodegradation conditions such as the amount of microorganism, water content and the temperature were applied to decide the optimal bioavailability condition in the experiments. In the case of soils without additional microorganisms (on the natural attenuation condition), 35% of initial TPH was removed from the soil by inhabitant microorganisms in soil for 30 days. When the commercialized microorganism cultured solutions were added into the soil, their average TPH removal efficiencies were 64%, and 54%, respectively, which were higher than that without additional microorganisms. When indigenous microorganisms isolated from the contaminated soil were added into the soil, TPH removal efficiency increased up to 95% (for Bacillus sp.). According to the calculation of the average biodegradation rates for Bacillus sp., the remediation goal (87% of the removal efficiency: 500 mg/kg) for the soil would reach within 24 days. Results suggested that TPH removal efficiency of biodegradation by injecting indigenous microorganisms is better than those by injecting commercialized adventive microorganisms and only by using the natural attenuation.

Remediation of heavy metal-contaminated soils using eco-friendly nano-scale chelators

  • Lim, Heejun;Park, Sungyoon;Yang, Jun Won;Cho, Wooyoun;Lim, Yejee;Park, Young Goo;Kwon, Dohyeong;Kim, Han S.
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.137-146
    • /
    • 2018
  • Soil washing is one of the most frequently used remediation technologies for heavy metal-contaminated soils. Inorganic and organic acids and chelating agents that can enhance the removal of heavy metals from contaminated soils have been employed as soil washing agents. However, the toxicity, low removal efficiency and high cost of these chemicals limit their use. Given that humic substance (HS) can effectively chelate heavy metals, the development of an eco-friendly, performance-efficient and cost-effective soil washing agent using a nano-scale chelator composed of HS was examined in this study. Copper (Cu) and lead (Pb) were selected as target heavy metals. In soil washing experiments, HS concentration, pH, soil:washing solution ratio and extraction time were evaluated with regard to washing efficiency and the chelation effect. The highest removal rates by soil washing (69% for Cu and 56% for Pb) were achieved at an HS concentration of 1,000 mg/L and soil:washing solution ratio of 1:25. Washing with HS was found to be effective when the pH value was higher than 8, which can be attributed to the increased chelation effect between HS and heavy metals at the high pH range. In contrast, the washing efficiency decreased markedly in the low pH range due to HS precipitation. The chelation capacities for Cu and Pb in the aqueous phase were determined to be 0.547mmol-Cu/g-HS and 0.192mmol-Pb/g-HS, respectively.

Study of the Performance of a Dry Cleaning Method for Polluted Ballast Gravel of Railroad Fields (철도부지 오염도상자갈의 건식 정화 기술 성능 연구)

  • Cho, Youngmin;Park, Duckshin;Kwon, Tae-Soon;Lee, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.552-557
    • /
    • 2015
  • Ballast gravel in a railroad field is often polluted by grease and heavy metals. In this paper, the performances of a dry cleaning method for polluted ballast gravel in which pollutants on the gravel surface can be physically removed was extensively studied. A polluted ballast cleaning device able to shoot emery blasting media onto the surface using compressed air was prepared. Polluted ballast gravel was put into this device for cleaning, with the treatment time varied from 1 to 10 min. The cleaning efficiency of the total petroleum hydrocarbons and heavy metals were studied. The total petroleum hydrocarbon removal efficiency was 70-80% for gravels sampled from a locomotive waiting line, while it was 40-60% for gravels sampled from a turnout area. The heavy metal removal efficiency exceeded 90% for copper and lead, while it was 65-80% for nickel and zinc. This system was found to be effective for the remediation of polluted ballast gravels.

Enhancement of Biodegradation Rate of Petroleum Hydrocarbons-contaminated Soil with Addition of Organic Composite Nutrients and a Chemical Oxidation (유기성 영양분 첨가 및 화학적 산화 연계를 통한 유류오염 토양의 생물학적 정화효율 향상에 관한 연구)

  • Kim, Guk-Jin;Oh, Seung-Taek;Lee, Cheol-Hyo;Seo, Sang-Ki;Kang, Chang-Hwan;Chang, Youn-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.59-66
    • /
    • 2008
  • A biological study was conducted to evaluate the enhancement of landfarming of soil contaminated with petroleum hydrocarbon (TPH) applying organic composite nutrients and a chemical oxidation during bioremediation. The target value of soil TPH after treatment was 500 mg/kg TPH. Addition of an organic compost and liquid swine manure for the removal of soil THP showed higher efficiency as 84.4% and 92.2% respectively than inorganic nutrients of 80.2%. In addition to the removal of non-biodegradable portion of residual hydrocarbons in soil, a chemical oxidation was applied during tailing period of the biological remediation, which showed high remediation efficiency as 98.1% compared with single bioremediation efficiency of 84.7%.

A Field Study on Remediation of Gasoline Contaminated Site by Soil Vapor Extraction (토양증기추출법에 의한 휘발유 오염토양의 현장복원 연구)

  • 김재덕;김영래;황경엽;이성철
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.13-23
    • /
    • 2000
  • The effects of operating condition of soil vapor extraction system and the characteristics of site on the remediation of oil contaminated soil were investigated. Thorough investigation showed that the site was contaminated with gasoline leaked from underground storage tank and the maximum concentration of BTEX and TPH were 1,081 ppm and 5,548 ppm respectively. The leaked gasoline were diffused to 6m deep and the area and volume of the polluted soil were assumed to 170$m^2$ and 1,000$\textrm{m}^3$respectively. The site were consisted of three different vertitical layers, the top reclaimed sandy soil between the earth surface and 3~4m deep, middle silty sand between 3~4m and 6m deep, and the bottom bedrock below the 6m deep. The air pemeability of soil was measured to 1.058-1.077$\times$10$^{-6}$ $\textrm{mm}^2$ by vacuum pump tests. The groundwater which level was 3~4m deep was observed in some areas of this site. The soil vapor extraction system which had 7.5 HP vacuum pump and 8 extraction wells was constructed in this site and operated at 8 hrs/day for 100 days. The BTEX was removed with above 90% efficiency where no groundwater and silty sand were observed. On the contrary, the efficiency of BTEX and TPH were dramatically decreased where groundwater and silty sand were observed. The flow rate of soil air induced by soil vapor extraction system was reduced in deeper soil.

  • PDF

Remediation of Soil Contaminated with Persistent Organic Pollutants through Subcritical Water Degradation (아임계수 분해를 이용한 난분해성 물질로 오염된 토양의 정화 연구)

  • Choi, Jae-Heon;Lee, Hwan;Lee, Cheol-Hyo;Kim, Ju-Yup;Oh, Seok-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.113-119
    • /
    • 2015
  • This study examined remediation of soil contaminated with polychlorinated biphenyls (PCBs) and other persistent organic pollutants by using subcritical water. Our results showed that removal efficiency of PCBs from soil and treatment temperature were linearly proportional under subcritical conditions. The removal efficiency as increased as reacting period increased. PCBs contaminating fine particles in soil were less effectively removed than those in entire contaminated soil. Reaction of the zero-valent iron and PCBs under subcritical condition produced dechlorinated product, where most of the PCBs were oxidised while little remained as dechlorinated. Other organic pollutants, such as TPH, BTEX, TCE/PCE, and chlorpyrifos, were removed by more than 90% at $300^{\circ}C$. Considering removal efficiency and identification of by-products, we suggest that subcritical water treatment may be effectively applied to soils contaminated with various persistent organic pollutants.

Development of Electrokinetic-Flushing Equipment for a Remediation of Soil Contaminated with Radionuclides (방사성오염토양 제염을 위한 동전기세정장치 개발)

  • Kim, Gye-Nam;Jung, Yun-Ho;Lee, Jung-Joon;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Un-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • This study examined the effect of an electrokinetic-flushing remediation for a soil of a high permeability. The soil was sampled from the site around a research atomic reactor which had high hydro-conductivities due to a high content of sand in the soil. The flow rate of the washing reagent was fast at the beginning but it was reduced as time lapsed. In the case of using citric acid as a washing reagent, the flow rate was fastest, 78.7 ml/day. The removal efficiencies of $Co^{2+}$ and $Cs^+$ from a soil cell with acetic acid were the highest, which were 95.2% and 84.2% respectively. The soil waste-solution volume generated from the electrokinetic remediation was reduced to about 1/20 of that from the soil washing remediation. Meanwhile, the electrokinetic-flushing method enhanced the removal efficiencies of $Co^{2+}$ and $Cs^+$ from the soil by about 6% and 2% respectively, compared to those by the electrokinetic method. Consequently, it was found that the electrokinetic-flushing method was more effective for the remediation of a soil with a high permeability.

  • PDF

BTEX Biodegradation in Contaminated Soil Samples Using Pure Isolates and Changes in the Mixed Microbial Community Structure (순수 분리 미생물을 이용한 오염 토양에서의 BTEX 생분해 특성과 미생물 군집 변화)

  • Chung, Kyung-Mi;Choi, Yong-Su;Hong, Seok-Won;Lee, Soo-Jin;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.757-763
    • /
    • 2006
  • In our previous studies, we have isolated bacteria from BTEX-contaminated sediment, which utilized BTEX as a sole carbon source and $NO_3$-N as an electron acceptor. For the possibility of field application, we have applied co-culture of those isolates in the BTEX-contaminated soil and evaluated their biodegradation efficiencies. To investigate the relationship between the isolates and indigenous microorganism in soil, changes of microbial community structure in soil samples with respect to time were monitored. To examine this, soil samples were artificially contaminated with benzene, toluene, ethylbenzene and o-xylene. BTEX-degrading bacteria such as Pseudomonas stutzeri strain 15(DQ 202712), Klebsiells sp. strain 20(DQ 202715) and Citrobacter sp. strain A(DQ 202713) were injected into the soil samples in the ratio of 2:1:1. Our results showed that the highest BTEX biodegradation efficiency was achieved when both BTEX and $NO_3-N$ existed simultaneously. The change in soil microbial community structure was characterized by PCR-DGGE analysis comparing the relative DGGE band intensities. The band intensities of indigenous microorganisms in the soil were reduced by injecting co-culture of the three isolates. On the contrary, the relative band intensities of the isolates were increased. Among the three isolates, Pseudomonas stutzeri strain 15 rendered the highest band intensity. This indicates that the Pseudomonas stutzeri was the dominant microbial species found in the soil samples.