• Title/Summary/Keyword: remanufacturing

Search Result 132, Processing Time 0.032 seconds

A Study on Inspection-ability and Classification-ability Evaluation for Mechanical Parts (기계부품의 검사 및 분류성 평가에 관한 연구)

  • Chang-Su Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1055-1062
    • /
    • 2023
  • Globally, the need for remanufacturing or reusing ships and various mechanical parts continues to increase due to environmental problems including global warming. Research on remanufacturing is being carried out in many areas. However, research on inspection and classification to identify the performance or degree of wear of mechanical parts is insufficient. In particular, studies on the inspection-ability and classification-ability of mechanical parts equipped with various materials and complex forms are highly required. Remanufacturing must be considered from the stage of design to extend the life cycle of mechanical parts. Particularly, it is very important to perform research for evaluating the degree of ease to inspect and classify various sorts of wear or deterioration of parts caused by long-term use easily. In this study, the degree of ease in inspecting or classifying mechanical parts for remanufacturing is defined as inspection-ability and classification-ability. In fact, to remanufacture old parts, inspection-ability and classification-ability should be reflected from the stage of design. The purpose of this study is to evaluate the inspection-ability and classification-ability of ships and various mechanical parts. This researcher has presented the quantitative evaluation procedure of inspection-ability and classification-ability, derived the factors and ranges that influence each of the details of easiness, assigned scores according to the ranges of the factors, and calculated weights. Lastly, this study presents the procedure of scoring to evaluate the overall weights of inspection-ability and classification-ability and also inspection-ability and classification-ability quantitatively.

Optimal Disposal Policy in a Hybrid Production System with Manufacturing and Remanufacturing (신제품 생산과 회수제품 재가공이 이루어지는 생산시스템에서 최적 처분 정책에 대한 연구)

  • Kim, Eun Gab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.312-321
    • /
    • 2007
  • We address a disposal issue of returned products in a product recovery system where a single product is stocked in order to meet a demand from customers who may return products after usage. Product returns occur randomly and can be accepted for remanufacturing or disposed of depending on the state of the system. We examine the structure of the optimal disposal policy for returned product that utilizes the information of the inventory of both serviceable and remanufacturable products. Numerical study indicates that it can be characterized by a monotonic threshold type of the curve. A disposal is allowed only when the remanufacturable inventory level exceeds a threshold which is the function of the inventory level of serviceable product and it is decreasing as the serviceable inventory level increases. Sensitivity analysis also indicates that the optimal disposal policy and the optimal profit have monotonic properties with respect to system parameters.

Analysis of Throttle Body's Remanufacturing Process and RPN (스로틀바디의 재제조 공정 및 RPN 분석)

  • Son, Woo Hyun;Park, Sang Jin;Jeong, Jae Yeong;Kim, Jae Hyuk;Bin, Hyang Wook;Mok, Hak Soo
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.11-22
    • /
    • 2016
  • In global automobile industry, the remanufacturing for used products has the merit to be reduced nearly 80 percent of energy consumption and resources of new product. The objective of this paper is the analysis of detailed remanufacturing processes about research object and failure modes of each process of throttle body which is one of automobile parts, to draw a FMEA and determine the degree of seriousness (S), detection (D) and occurrence (O) of many failures. And we compared the current RPN method of being used to calculate values of RPN with three suggested methods. : Summation method, Square root method, Volume method.

A Study on the Remanufacturing Effect of Aged Three-Way Catalysts (사용후 가솔린 자동차 삼원촉매의 재제조 효과 고찰)

  • Kwak, Seung-Min;Lim, Jong-Sun;Kim, Tae-Won;Park, Hae-Kyoung
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.430-436
    • /
    • 2009
  • Deactivated three-way catalysts which had been exposed to gasoline engine exhaust for a long time were remanufactured by ultra sonic cleaning with distilled water, sulfuric acid solution and impregnation with precious metals (Pt, Pd, Rh). The catalytic properties as well as conversion reactivity of CO, THC and NOx about fresh, aged and remanufactured catalysts were examined. Most of the pollutants deposited on the aged three-way catalysts were removed in the remanufacturing process of those catalysts. At the same time a little amount of precious metals like Pt and Pd were removed in the remanufacturing process. Under the experimental condition used in this study, in the case of the remanufactured catalysts with impregnation of precious metals, the catalytic activities were recovered to almost the same level, or higher level of that of the fresh catalyst.

Environmental Evaluation for the Remanufacturing of Rental Product Using the LCA Methodology (LCA기법을 이용한 랜탈 재제조품의 환경성 평가)

  • Kwak, In-Ho;Hwang, Young-Woo;Park, Kwang-Ho;Park, Ji-Hyoung;Seol, So-Young;Shin, Hwa-Jeong;Yang, Eun-Hyeok;Min, Gon-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.611-617
    • /
    • 2016
  • Remanufacturing that is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling has been received attention in aspects of resource, recycling because it is a great environmental improvement. Remanufacturing is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling. With a great environmental improvement and resource recycling and conservation, many studies were conducted. Up to date, remanufacturing activities are mainly applied to automobile parts and printer toner cartridge in South Korea. However, remanufacturing of rental product is not well conducted although rental products are collected in good condition and could be remanufactured in the same condition as a new product. Therefore, in this study, we conducted life cycle assessment (LCA) to an air cleaner product that is one of rental products. This study attempts to identify the processes in new products and remanufacturing life cycles that contribute the most environmental impacts. The results show that air cleaner remanufacturing could reduce about 20% of environmental impacts compared to new product. The greatest benefit related to environmental impact is with regard to ozone layer depletion potential (ODP), which is reduced by 94%. In the life cycle of air cleaner, raw material extraction stage had the most environmental impacts, especially with regard to abiotic depletion potential (ADP) and global warming potential (GWP). In the environmental impacts in each part, the ABS power had the highest environmental impacts.