• Title/Summary/Keyword: remanent life

Search Result 3, Processing Time 0.015 seconds

Nondestructive Evaluation for Remanent Life of 1Cr-0.5Mo Steel by Reversible Permeability

  • Ryu, Kwon-Sang;Lee, Yun-Hee;Park, Jong-Seo;Baek, Un-Bong
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.206-209
    • /
    • 2012
  • Peak interval for reversible permeability is presented for nondestructively evaluating the remanent life of 1Cr-0.5Mo steel. The method to measure the peak interval of reversible permeability is based on the value of reversible permeability is the same as the differential value of the hysteresis loop. The measurement principle is based on the first harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to a frequency of the exciting voltage. Results obtained for the peak interval of reversible permeability and Rockwell hardness on the aged samples decrease as aging time and the Larson-Miller parameter increase. We could estimate the remanent life of 1Cr-0.5Mo steel by using the relationship between the peak interval of reversible permeability and the Larson-Miller parameter, nondestructively.

Nondestructive Evaluation of Remanent Life of Turbine Rotor Steel by Measuring Reversible Magnetic Permeability (가역투자율 측정에 의한 터빈로터강의 비파괴적 잔여수명 평가)

  • Ryu, Kwon-Sang;Nahm, Seung-Hoon;Kim, Yong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.315-321
    • /
    • 2003
  • The integrity of the turbine rotors can be assessed by measuring the material properties at service temperature. In order to evaluate the remanent life of turbine rotor steel nondestructively, a measurement system of reversible magnetic permeability using an alternating perturbing magnetic field was constructed. We present a new non-destructive method to evaluate the remanent life of 1Cr-1Mo-0.25V steel using the value of reversible magnetic permeability. This method is based on the existence of reversible magnetic permeability in the differential magnetization around the coercive field strength. We measured the first harmonics voltage induced in a coil using a lock-in amplifier tuned to an exciting frequency. The Results of reversible magnetic Permeability and Wickers hardness on the aged samples show that the peak interval of reversible magnetic permeability (PIRMP) and Vickers hardness decreases as aging time increases. A softening curve is obtained from the correlation between Vickers hardness and the PIRMP. This curve can be used as a non-destructive method to evaluate the remanent life of turbine rotor steel.

Nondestructive Characterization for Remanent Life of Advanced Ferritic Steel by Reversible Permeability (가역투자율에 의한 첨단 페라이트강의 잔여수명에 대한 비파괴평가)

  • Hong, Seung-Pyo;Ryu, Kwon-Sang;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • We present nondestructive characterization for remanent life of advanced ferritic steels, next-gen energy facility materials by reversible permeability. The reversible permeability is based on the theory that the value of reversible permeability is the same differential of the hysteresis loop. The measurement principle is based on the foundation of harmonics voltage induced in a sensing coil using a lock-in amplifier tuned to the frequency of the exciting one. The peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength(TS) of the aged samples decreased with aging time. We could estimate the remanent life of advanced ferritic steel by using the relationship between the peak interval of reversible permeability and Larson-Miller parameter(LMP), non-destructively.