• Title/Summary/Keyword: relief valve

Search Result 142, Processing Time 0.021 seconds

Methodology for optimum design of surge relief valve in water distribution system (상수관망에서 서지 릴리프밸브의 최적 설계 방법론)

  • Kim, Hyunjun;Hur, Jisung;Kim, Geonji;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Surge pressure is created by rapid change of flow rate due to operation of hydraulic component or accident of pipeline. Proper control of surge pressure in distribution system is important because it can damage pipeline and may have the potential to degrade water quality by pipe leakage due to surge pressure. Surge relief valve(SRV) is one of the most widely used devices and it is important to determine proper parameters for SRV's installation and operation. In this research, determining optimum parameters affecting performance of the SRV were investigated. We proposed the methodology for finding combination of parameters for best performance of the SRV. Therefore, the objective function for evaluate fitness of candidate parameters and surge pressure simulation software was developed to validate proposed parameters for SRV. The developed software was integrated into genetic algorithm(GA) to find best combination of parameters.

Characteristic Comparison on Internal Cushion Devices at High-speed Pneumatic Cylinders (고속 공기압 실린더 내장용 쿠션기구의 특성 비교)

  • Kim, Dotae;Zhang, Zhong Jie
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.24-30
    • /
    • 2013
  • This paper studies the comparative analysis on two different internal cushion devices (the types of needle and relief valve) used to absorb the energy which is generated when the pneumatic cylinder moves with the load at meter-out speed control system. The effect at varying the piston velocity under same driving condition is mainly investigated. The simulation results on pressure in the cushion chamber and the dynamic behavior of the relief valve type cushion device are compared with the needle valve type. Design and performance are improved with the cushion configuration of better quality at high-speed pneumatic cylinder. Based on the relation between absorbed energy and impact energy at cushion process, cushion performance at pneumatic cylinder is evaluated.

Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve (프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석)

  • Park, Jeong Woo;Khan, Haroon Ahmad;Jeong, Eun-A;Kwon, Sung-Ja;Yun, So-Nam;Lee, Hue-Sung
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

Characteristics Analysis of the Solenoid Valve for Exhaust Brake (배기 브레이크용 솔레노이드 밸브의 특성 해석)

  • 윤소남;함영복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.190-195
    • /
    • 2004
  • An exhaust brake system is composed of a gate valve, a pneumatic cylinder and an on-off solenoid valve. An on-off solenoid valve which is a key component of the exhaust brake system ought to have characteristics such as high reliability and long life for reducing the foot brake and tires damage, and for driver's fatigue relief of middle/large size vehicles running a long distance. In this paper, an on-off solenoid valve which is used for vehicle brake system was studied. For the performance evaluation of the on-off solenoid, electromagnetic characteristics and dynamic characteristics are analyzed. On the basic study for the performance improvement of exhaust brake system, pneumatic circuit and pneumatic valve of on-off solenoid type were suggested and the performance of pneumatic valve through the test procedure was evaluated.

Study of Waterhammer Suppression Technique due to Valve Closing on Water Supply Pipeline (송수관로 밸브폐쇄에 따른 수충격현상 완화기법 연구)

  • Park, Jong-Ho;Park, Han-Yung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.11-17
    • /
    • 2011
  • The cause of waterhammer phenomenon due to valve closing which is installed on pipeline is clarified in this study. Also if waterhammer phenomenon occurs on simple pipeline, expensive facilities like pressure relief valve is adapted to protect pipeline from waterhammer so far. But this study shows that waterhammer phenomenon can be suppressed by just simple modification of valve control sequence, and this technique is verified by simulation and site experiment.

STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

  • Lim, Heok-Soon;Song, Tae-Young;Chi, Moon-Goo;Kim, Seoung-Rae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

A Study on the Measurement of Delivery Flow Ripple Generated by Hydraulic Axial Piston Pumps (유압용 액셜 피스톤 펌프의 유량맥동 계측에 관한 연구)

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.35-43
    • /
    • 1999
  • The paper describes an approach for measuring delivery flow ripple generated by oil hydraulic axial piston pumps. In order to reduce pressure ripple which cause to undesirable noise. vibration and fatigue in hydraulic systems it is indispensible measure a delivery flow ripple from pumps. Since the flow ripple measurement of flow pumps is independent of the dynamic characteristics of the connected hydraulic circuit the measurement of flow ripple is most suitable for pump fluid-borne noise rating. The measurement of flow ripple with high frequencies from axial piston pumps is made by applying the remote instantaneous flow rate measurement method which is based on the dynamic characteristics between pressure and flow rate in hydraulic pipeline. The measured flow ripple waveforms are influenced by the configuration of V-shaped triangular relief groove in the valve plate. It can be seen that the appropriate relief groove in valve plate reduces the pressure and flow ripple amplitude and frequency spectrum for high harmonics.

  • PDF