• Title/Summary/Keyword: reliable feature selection

Search Result 25, Processing Time 0.035 seconds

Noise-Robust Speaker Recognition Using Subband Likelihoods and Reliable-Feature Selection

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.89-100
    • /
    • 2008
  • We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable-feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable-feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable-feature selection achieves better performance than the conventional feature recombination system with reliable-feature selection.

  • PDF

Noise Robust Speaker Verification Using Subband-Based Reliable Feature Selection (신뢰성 높은 서브밴드 특징벡터 선택을 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • MALSORI
    • /
    • no.63
    • /
    • pp.125-137
    • /
    • 2007
  • Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.

  • PDF

Noise Robust Speaker Identification using Reliable Sub-Band Selection in Multi-Band Approach (신뢰성 높은 서브밴드 선택을 이용한 잡음에 강인한 화자식별)

  • Kim, Sung-Tak;Ji, Mi-Gyeong;Kim, Hoi-Rin
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.127-130
    • /
    • 2007
  • The conventional feature recombination technique is very effective in the band-limited noise condition, but in broad-band noise condition, the conventional feature recombination technique does not produce notable performance improvement compared with the full-band system. To cope with this drawback, we introduce a new technique of sub-band likelihood computation in the feature recombination, and propose a new feature recombination method by using this sub-band likelihood computation. Furthermore, the reliable sub-band selection based on the signal-to-noise ratio is used to improve the performance of this proposed feature recombination. Experimental results shows that the average error reduction rate in various noise condition is more than 27% compared with the conventional full-band speaker identification system.

  • PDF

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

Study on Correlation-based Feature Selection in an Automatic Quality Inspection System using Support Vector Machine (SVM) (SVM 기반 자동 품질검사 시스템에서 상관분석 기반 데이터 선정 연구)

  • Song, Donghwan;Oh, Yeong Gwang;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.370-376
    • /
    • 2016
  • Manufacturing data analysis and its applications are getting a huge popularity in various industries. In spite of the fast advancement in the big data analysis technology, however, the manufacturing quality data monitored from the automated inspection system sometimes is not reliable enough due to the complex patterns of product quality. In this study, thus, we aim to define the level of trusty of an automated quality inspection system and improve the reliability of the quality inspection data. By correlation analysis and feature selection, this paper presents a method of improving the inspection accuracy and efficiency in an SVM-based automatic product quality inspection system using thermal image data in an auto part manufacturing case. The proposed method is implemented in the sealer dispensing process of the automobile manufacturing and verified by the analysis of the optimal feature selection from the quality analysis results.

An Enhanced Feature Selection Method Based on the Impurity of Words Considering Unbalanced Distribution of Documents (문서의 불균등 분포를 고려한 단어 불순도 기반 특징 선택 방법)

  • Kang, Jin-Beom;Yang, Jae-Young;Choi, Joong-Min
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.804-816
    • /
    • 2007
  • Sample training data for machine learning often contain irrelevant information or redundant concept. It is also the case that the original data may include noise. If the information collected for constructing learning model is not reliable, it is difficult to obtain accurate information. So the system attempts to find relations or regulations between features and categories in the teaming phase. The feature selection is to remove irrelevant or redundant information before constructing teaming model. for improving its performance. Existing feature selection methods assume that the distribution of documents is balanced in terms of the number of documents for each class and the length of each document. In practice, however, it is difficult not only to prepare a set of documents with almost equal length, but also to define a number of classes with fixed number of document elements. In this paper, we propose a new feature selection method that considers the impurities among the words and unbalanced distribution of documents in categories. We could obtain feature candidates using the word impurity and eventually select the features through unbalanced distribution of documents. We demonstrate that our method performs better than other existing methods via some experiments.

Reliable Measurement Selection for The Small Target Detection and Tracking in The IR Scanning Images (적외선 주사 영상에서 소형 표적의 탐지 및 추적을 위한 신뢰성 있는 측정치 선택 기법)

  • Yang, Yu-Kyung;Kim, Sung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.75-84
    • /
    • 2008
  • A new automatic small target detection and tracking algorithm for the real-time IR surveillance system is presented. The automatic target detection and tracking algorithm of the real-time systems, requires low complexity and robust tracking performance in the cluttered environment. Linear-array and parallel-scan IR systems usually suffer from severe scan noise caused by the detector non-uniformity. After the spatial filtering and thresholding, this scan noise still remains as high amplitude clutter which degrades the target detection rate and tracking performance. In this paper, we propose a new feature which consists of area and validity information of a measurement. By adopting this feature to the measurements selection and track confirmation, we can increase the target detection rate and reduce both the track loss rate and false track rate. From the experimental results, we can validate the feasibility of the proposed method in the noisy IR images.

A Study on Automatic Coregistration and Band Selection of Hyperion Hyperspectral Images for Change Detection (변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구)

  • Kim, Dae-Sung;Kim, Yong-Il;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • This study focuses on co-registration and band selection, which are one of the pre-processing steps to apply the change detection technique using hyperspectral images. We carried out automatic co-registration by using the SIFT algorithm which performance was already established in the computer vision fields, and selected the bands fur change detection by estimating the noise of image through the PIFs reflecting the radiometric consistency. The EM algorithm was also applied to select the band objectively. Hyperion images were used for the proposed techniques, and non-calibrated bands and striping noises contained in Hyperion image were removed. Throughout the results, we could develop the reliable co-registration procedure which coincided with accuracy within 0.2 pixels (RMSE) for change detection, and verified that band selection depending on the visual inspection could be objective by extracting the PIFs.

Improved Fault Detection Based on One-Class Classification and Feature Selection (단일 클래스 분류와 특징 선택에 기반한 향상된 이상 감지)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.216-223
    • /
    • 2019
  • Fault detection during production processes is one of the required operational tasks to run production processes both safely and consistently. Unexpected operational events or undetected process faults can have a serious impact on the production systems and subsequently on the final products' quality. In addition, such situations may lead to malfunctions or breakdowns of production processes. To reliably detect such abnormalities, a new one-class classification-based detection scheme has recently been developed The proposed method consists of four steps:1) noise filtering, 2) feature selection, 3) nonlinear representation and 4) outlier detection. The performance of the proposed scheme was demonstrated using the multivariate data obtained from a simulation process. The results have shown that the proposed method produced reliable monitoring results and outperforms any existing methods with an average improvement of 25.4%. The use of proper feature selection in the proposed framework yielded better detection performance.