• Title/Summary/Keyword: reliability sensitivity

Search Result 730, Processing Time 0.026 seconds

Effective Concepts of Harmonious Management of Production Systems

  • Arutiunian, Iryna;Poltavets, Maryna;Аchacha, Maryna;Bondar, Olena;Pavlov, Fedir;Gerasymenko, Oleksandr;Kulinich, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.141-144
    • /
    • 2021
  • Modern concepts of management of construction production systems require solving the problems of harmonization of the distribution of structural elements on the way to overcoming global destabilization processes. An effective ratio of functional subsystems of production in an environment of mutual influence create sustainable opportunities for production management and contribute to the logical development of the system as a whole in achieving the main goal of harmonious management. The purpose of the study is to develop the concept of effective management of production systems in construction with the harmonious formation of organizational structures. The results of the study allowed to reveal the harmonization approach in improving the interaction of structural elements of production and accelerating their functional sensitivity to changes in the environment. Harmonious production system more effectively adapts to the diversity of interests, goals and actions at all levels of management of different subsystems in any environment.

Clinical Application and Limitations of the Capsular Pattern (관절낭 패턴의 임상적 적용과 한계)

  • Lim, Wootaek
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2021
  • A normal range of motion is essential for performing activities of daily living. The capsular pattern is the proportional motion restriction in range of motion during passive exercises due to tightness of the joint capsule. Although the capsular pattern is widely referred to in clinical practice, there is no scientific evidence to support the concept. In this review, the appropriateness of the capsular pattern for evaluation of joint pathology was assessed. In the Textbook of Orthopaedic Medicine written by Cyriax, the capsular pattern did not specify how much reduction in angular motion is considered motion restriction. As the definition proposed initially was unclear, different methods have been used in previous studies investigating capsular pattern. In addition, the capsular pattern described all the major joints of the human body, but only the hip joint, knee joint, and shoulder joint were studied in experimental studies. Sensitivity and specificity were reported in one study and were meaningful in specific pathologies (loss of extension to loss of flexion). There was no consensus on the reliability and validity. In summary, the capsular pattern suggested by Cyriax or Kaltenborn is not supported or applies only to certain conditions. Various components around a joint complement each other and provide stability to the joint. It is recommended that the therapist perform multiple assessments rather than rely on a single assessment when evaluating joints.

Biomechanical evaluations of the long-term stability of dental implant using finite element modeling method: a systematic review

  • Hosseini-Faradonbeh, Seyed Aref;Katoozian, Hamid Reza
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.182-202
    • /
    • 2022
  • PURPOSE. The aim of this study is to summarize various biomechanical aspects in evaluating the long-term stability of dental implants based on finite element method (FEM). MATERIALS AND METHODS. A comprehensive search was performed among published studies over the last 20 years in three databases; PubMed, Scopus, and Google Scholar. The studies are arranged in a comparative table based on their publication date. Also, the variety of modeling is shown in the form of graphs and tables. Various aspects of the studies conducted were discussed here. RESULTS. By reviewing the titles and abstracts, 9 main categories were extracted and discussed as follows: implant materials, the focus of the study on bone or implant as well as the interface area, type of loading, element shape, parts of the model, boundary conditions, failure criteria, statistical analysis, and experimental tests performed to validate the results. It was found that most of the studied articles contain a model of the jaw bone (cortical and cancellous bone). The material properties were generally derived from the literature. Approximately 43% of the studies attempted to examine the implant and surrounding bone simultaneously. Almost 42% of the studies performed experimental tests to validate the modeling. CONCLUSION. Based on the results of the studies reviewed, there is no "optimal" design guideline, but more reliable design of implant is possible. This review study can be a starting point for more detailed investigations of dental implant longevity.

An artificial intelligence-based design model for circular CFST stub columns under axial load

  • Ipek, Suleyman;Erdogan, Aysegul;Guneyisi, Esra Mete
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.119-139
    • /
    • 2022
  • This paper aims to use the artificial intelligence approach to develop a new model for predicting the ultimate axial strength of the circular concrete-filled steel tubular (CFST) stub columns. For this, the results of 314 experimentally tested circular CFST stub columns were employed in the generation of the design model. Since the influence of the column diameter, steel tube thickness, concrete compressive strength, steel tube yield strength, and column length on the ultimate axial strengths of columns were investigated in these experimental studies, here, in the development of the design model, these variables were taken into account as input parameters. The model was developed using the backpropagation algorithm named Bayesian Regularization. The accuracy, reliability, and consistency of the developed model were evaluated statistically, and also the design formulae given in the codes (EC4, ACI, AS, AIJ, and AISC) and the previous empirical formulations proposed by other researchers were used for the validation and comparison purposes. Based on this evaluation, it can be expressed that the developed design model has a strong and reliable prediction performance with a considerably high coefficient of determination (R-squared) value of 0.9994 and a low average percent error of 4.61. Besides, the sensitivity of the developed model was also monitored in terms of dimensional properties of columns and mechanical characteristics of materials. As a consequence, it can be stated that for the design of the ultimate axial capacity of the circular CFST stub columns, a novel artificial intelligence-based design model with a good and robust prediction performance was proposed herein.

A critical study on best methodology to perform UQ for RIA transients and application to SPERT-III experiments

  • Dokhane, A.;Vasiliev, A.;Hursin, M.;Rochman, D.;Ferroukhi, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1804-1812
    • /
    • 2022
  • The aim of this paper is to assess the reliability and accuracy of the PSI standard method, used in many previous works, for the quantification of ND uncertainties in the SPERT-III RIA transient, by quantifying the discrepancy between the actual inserted reactivity and the original static reactivity worth and their associated uncertainties. The assessment has shown that the inherent S3K neutron source renormalization scheme, introduced before starting the transient, alters the original static reactivity worth of the transient CR and reduces the associated uncertainty due to the ND perturbation. In order to overcome these limitations, two additional methods have been developed based on CR adjustment. The comparative study performed between the three methods has showed clearly the high sensitivity of the obtained results to the selected approach and pointed out the importance of using the right procedure in order to simulate correctly the effect of ND uncertainties on the overall parameters in a RIA transient. This study has proven that the approach that allows matching the original static reactivity worth and starting the transient from criticality is the most reliable method since it conservatively preserves the effect of the ND uncertainties on the inserted reactivity during a RIA transient.

A Reliable Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Apple stem grooving virus in Pear

  • Lee, Hyo-Jeong;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.92-97
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a high-risk viral pathogen that infects many types of fruit trees, especially pear and apple, and causes serious economic losses across the globe. Thus, rapid and reliable detection assay is needed to identify ASGV infection and prevent its spread. A reliable reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed, optimize, and evaluated for the coding region of coat protein of ASGV in pear leaf. The developed RT-LAMP facilitated the simple screening of ASGV using visible fluorescence and electrophoresis. The optimized reaction conditions for the RT-LAMP were 63℃ for 50 min, and the results showed high specificity and 100-fold greater sensitivity than the reverse transcription polymerase chain reaction. In addition, the reliability of the RT-LAMP was validated using field-collected pear leaves. Furthermore, the potential application of paper-based RNA isolation, combined with RT-LAMP, was also evaluated for detecting ASGV from field-collected samples. These assays could be widely applied to ASGV detection in field conditions and to virus-free certification programs.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Experimental and numerical analyses of RC beams strengthened in compression with UHPFRC

  • Thomaz E.T. Buttignol;Eduardo C. Granato;Tulio N. Bittencourt;Luis A.G. Bitencourt Jr.
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.511-529
    • /
    • 2023
  • This paper aims to better understand the bonding behavior in Reinforced Concrete beams strengthened with an Ultra-High Performance Fiber Reinforced Concrete (RCUHPFRC) layer on the compression side using experimental tests and numerical analyses. The UHPFRC mix design was obtained through an optimization procedure, and the characterization of the materials included compression and slant shear tests. Flexural tests were carried out in RC beams and RC-UHPFRC beams. The tests demonstrated a debonding of the UHPFRC layer. In addition, 3D finite element analyses were carried out in the Abaqus CAE program, in which the interface is modeled considering a zero-thickness cohesive-contact approach. The cohesive parameters are investigated, aiming to calibrate the numerical models, and a sensitivity analysis is performed to check the reliability of the assumed cohesive parameters and the mesh size. Finally, the experimental and numerical values are compared, showing a good approximation for both the RC beams and the RC strengthened beams.

Application of deterministic models for obtaining groundwater level distributions through outlier analysis

  • Dae-Hong Min;Saheed Mayowa Taiwo;Junghee Park;Sewon Kim;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.499-509
    • /
    • 2023
  • The objective of this study is to perform outlier analysis to obtain the distribution of groundwater levels through the best model. The groundwater levels are measured in 10, 25 and 30 piezometers in Seoul, Daejeon and Suncheon in South Korea. Fifty-eight empirical distribution functions were applied to determine a suitable fit for the measured groundwater levels. The best fitted models based on the measured values are determined as the Generalized Pareto distribution, the Johnson SB distribution and the Normal distribution for Seoul, Daejeon and Suncheon, respectively; the reliability is estimated through the Anderson-Darling method. In this study, to choose the appropriate confidence interval, the relationship between the amount of outlier data and the confidence level is demonstrated, and then the 95% is selected at a reasonable confidence level. The best model shows a smaller error ratio than the GEV while the Mahalanobis distance and outlier labelling methods results are compared and validated. The outlier labelling and Mahalanobis distance based on median shown higher validated error ratios compared to their mean equivalent suggesting, the methods sensitivity to data structure.

Optimization of Ceramide Analysis Method Using LC-MS in Cosmetics

  • Su-Jin Park;Hee-Jin Yoo;Duck-Hyun Kim;Ji-Won Park;Eunji Jeon;Abhik Mojumdar;Kun Cho
    • Mass Spectrometry Letters
    • /
    • v.15 no.1
    • /
    • pp.49-53
    • /
    • 2024
  • Ceramide is a lipid in which sphingoid bases and fatty acids are linked by amide bonds. As a marker of skin disease in the human stratum corneum, its disease-causing and therapeutic effects have been partially confirmed, and it is therefore an important element in commercially available cosmetic formulations. However, structural diversity caused by differences in the chain length, number, and location of hydroxyl groups makes quality control difficult. In this study, a method was established to separate different ceramide species using reversed-phase LC-MS/MS and thus enable qualitative evaluation. Separation of four standards was achieved within a short retention time, and the accuracy and sensitivity of the method were demonstrated by the low limit of detection (LOD) calculated based on the calibration curve showing linearity, with R2 > 0.994. After verification of reproducibility and reliability through intra- and inter-day analyses, the efficiency of the method was confirmed through analysis of commercial cosmetic raw materials.