• Title/Summary/Keyword: reliability sensitivity

Search Result 730, Processing Time 0.024 seconds

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

Development of a Korean Geriatric Suicidal Risk Scale (KGSRS) (한국형 노인자살위험 사정도구 개발)

  • Lee, Sang Ju;Kim, Jung Soon
    • Journal of Korean Academy of Nursing
    • /
    • v.46 no.1
    • /
    • pp.59-68
    • /
    • 2016
  • Purpose: Increase in suicide rate for senior citizens which has become widespread in our society today. It is not a normal social phenomenon and is beyond the danger level. The contents of this study include Korean senior citizens' suicide related risk factors and warning signs, and the development of a simple Geriatric Suicide Risk Scale. Methods: This study is Methodological Research to verify reliability and validity of the Geriatric Suicide Risk Scale according to the tool development process suggested by Devellis (2012). Results: For predictive validity assessment, high suicide screening accuracy was showed with an Area under the ROC curve (AUC) of .93. For the optimal cutoff point of 11, sensitivity was 93.9%, and specificity, 75.7% which are excellence levels. Cross validity for assessment of generalization possibility showed the Area under the ROC curve (AUC) as .82 and in case of a cutoff point of 11, sensitivity was 73.7%, and specificity, 65.9%. Conclusion: When it comes to practical nursing, it is significant that the Korean Geriatric Suicide Risk Scale has high reliability and validity through adequate tool development and the tool assessment step to select degree of suicide risk of senior citizens. Also, it can be easily applied and does not take a long time to administer. Further, it can be used by health care personnel or the general public.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

Development of Analysis Model and Sensitivity Analysis for High-Power Hydraulic Drifter Design (고출력 유압 드리프터 설계를 위한 해석모델 개발 및 민감도 분석)

  • Noh, Dae-Kyung;Lee, Dae-Hee;Yun, Joo-Seop;Lee, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.11-24
    • /
    • 2018
  • The purpose of the present study is to develop an analysis model to analyze the design parameter sensitivity of a high-power drifter suitable for implementation in Korean hydraulic drills. This study aims to establish a basis for the optimization of the impact performance and stability of a high-power drifter by investigating the effects of each design parameter on the impact performance via design parameter sensitivity analysis. To begin, an analysis model of drifter dynamics is developed, and the reliability of the analysis model is verified by comparing the analysis results to the experimental results. The drifter is then redesigned for compatibility with Korean hydraulic drills. Finally, design parameter sensitivity analysis of the redesigned drifter is conducted to determine the effects of the design parameters on the impact performance, and to extract the high-sensitivity parameters. SimulationX, which is multi-physics analysis software, is used to develop the analysis model, and EasyDesign is employed for design parameter sensitivity analysis.

Geometric Sensitivity Index for the GNSS Using Inner Products of Line of Sight Vectors

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Chulsoo;Bu, Sungchun;Jang, Jeagyu;Lee, Young Jae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.437-444
    • /
    • 2015
  • Satellite selection and exclusion techniques have been applied to the global navigation satellite system (GNSS) with the aim of achieving a balance between navigational performance and computational efficiency. Conventional approaches to satellite selection based on the best dilution of precision (DOP) are excessively computational and complicated. This paper proposes a new method that applies a geometric sensitivity index of individual GNSS satellites. The sensitivity index is derived using the inner product of the line of sight (LOS) vector of each satellite. First, the LOS vector is computed, which accounts for the geometry between the satellite and user positions. Second, the inner product of each pair of LOS vectors is calculated, which indicates the proximities of the satellites to one another. The proximity can be determined according to the sensitivity of each satellite. A post-processing test was conducted to verify the reliability of the proposed method. The proposed index and the results of a conventional approach that measures the dilution of precision (DOP) were compared. The test results demonstrate that the proposed index produces results that are within 96% of those of the conventional approach and reduces the computational burden. This index can be utilized to estimate the sensitivity of individual satellites, obtaining a navigation solution. Therefore, the proposed index applies to satellite selection and exclusion as well as to the sensitivity analyses of multiple GNSS applications.

A Study on the Safety through Response Analysis Evaluation of Pre-Anxiety Behavior and Risk Sensitivity Images (대응분석을 통한 안전·불안전 행동 및 위험감수성 이미지 평가)

  • Yu Mi Moon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.471-483
    • /
    • 2024
  • Purpose: This study aimed to understand the relationship between risk-sensitive factors and safety and unsafe behavior, and to clarify the relationship between risk-sensitive factors and demographic cha- racteristics through response matching analysis. To this end, a survey was conducted on 501 construc- tion site workers and data were analyzed using the SPSS program. Method: Six factors were derived through frequency analysis, cross-analysis, exploratory factor analysis, and reliability analysis for data purification. Multiple regression analysis and response analysis were conducted. Result: Risk-sensitive sensitivity and avoidance were found to have a significant effect on safety behavior and unsafe behavior, and the relationship was found according to age and occupation. Conclusion: Taken together, it shows that safety behavior is influenced by managing individual risk sensitivity and sensitivity, and properly managing avoidance. Accordingly, it suggests that intervention is necessary to manage risk sensitivity and sensitivity to promote safety behavior and maintain a sustainable safety culture, and to prevent excessive avoidance.

The study of multicultural education for preservice teachers in Gangwon-do who major in mathematics education (강원지역 수학과 예비중등교사의 다문화 교육에 대한 연구)

  • Oh, Ju-Mok
    • The Mathematical Education
    • /
    • v.52 no.3
    • /
    • pp.379-398
    • /
    • 2013
  • The purpose of this research is to study a perception of multicultural education for preservice teachers who major in mathematics. The research has been done on the data collected from 126 preservice teachers in Gangwon-do who major in mathematics. The data collected include experience of multiculturalism, multicultural efficacy, multicultural understanding and multicultural sensitivity. The data have been analyzed by reliability test, t-test, one-way anova and pearson correlation. Most of preservice teachers who major in mathematics have had no experience of multiple cultures. But they have shown a high perception on multicultural education and a significant positive correlation on their experience of multiculturalism, multicultural efficacy and multicultural sensitivity. Furthermore, the female preservice teachers' multicultural efficacy, multicultural understanding and multicultural sensitivity are much more high than the male preservice teachers'. The difference between different sex has been statistically significant.

A Study on the Vibration Analysis of a Power Transmission Converter by Substructure Synthesis Method (부분구조합성법에 의한 동력전달 변화기의 진동해석에 관한 연구)

  • 박석주;왕지석;박성현;오창근;박영철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-57
    • /
    • 2000
  • This study intends to reduce the weight of structure without changing the dynamic characteristics. At first, the Vibration analysis by the Substructure Synthesis Method and FFM using the ANSYS are performed for the engine speed converter to confirm the reliability of the analyzing tools. Weight minimization is performed by the Sensitivity Analysis and the Optimum Structural Modification. To decrease the converter weight ideally, the parts with low sensitivity are to be cut mainly, and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with high sensitivity. As the unique mathematical solution for the homogeneous problem(i.e. 0 object function problem) does not exist, the converter is redesigned with much thinner initial thickness. The goal of this study is to recover the dynamic characteristics of redesigned structure to those of the original one. To say in the other words, the modified structure has the same dynamic characteristics and the more lighter weight to compare with the original one.

  • PDF

A Study on the Vibration Analysis of a Power Transmission by Substructure Synthesis Method (부분구조합성에 의한 동력전달기의 진동해석에 관한 연구)

  • 박석주;박성현;박영철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.161-166
    • /
    • 2001
  • This study intends to reduce the weight of structure without changing the dynamic characteristics. At first, the Vibration analyses by the Substructure Synthesis Method and FEM using the ANSYS are performed for the engine speed converter to confirm the reliability of the analyzing tools. Weight minimization is performed by the Sensitivity Analysis and the Optimum Structural Modification. To decrease the converter weight ideally, the parts with low sensitivity are to be cut mainly, and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with high sensitivity. As the unique mathematical solution for the homogeneous problem( i.e. 0 object function problem) does not exist, the converter is redesigned with much thinner initial thickness. The goal of this study is to recover the dynamic characteristics of redesigned structure to those of the original one. To say in the other words, the modified structure has the same dynamic characteristics and the more lighter weight to compare with the original one. In this analysis, the modification was performed with the redesigned initial thickness of 60 mm and 70 mm. And the numbers of the interesting natural frequencies are 1, 2, 4 respectively. Consequently 27% of weight reduction effects were earned.

  • PDF

The Efficient Sensitivity Analysis on Statistical Moments and Probability Constraints in Robust Optimal Design (강건 최적설계에서 통계적 모멘트와 확률 제한조건에 대한 효율적인 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliability-based design optimization are examples of the most famous methodologies. In their formulation, the mean and standard deviation of a performance function and constraints expressed by probability conditions are involved. Therefore, it is essential to effectively and accurately calculate them and, in addition, the sensitivity results are required to obtain when the nonlinear programming is utilized during optimization process. We aim to obtain the new and efficient sensitivity formulation, which is based on integral form, on statistical moments such as the mean and standard deviation, and probability constraints. It does not require the additional functional calculation when statistical moments and failure or satisfaction probabilities are already obtained at a design point. Moreover, some numerical examples have been calculated and compared with the exact solution or the results of Monte Carlo Simulation method. The results seem to be very satisfactory.