• Title/Summary/Keyword: reliability decoding

Search Result 59, Processing Time 0.029 seconds

A Study on layered Space Time Trellis codes for MIMO system based on Iterative Decoding Algorithm (MIMO 시스템에서 반복 복호 알고리즘 기반의 계층적 시공간 부호화 방식 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.845-849
    • /
    • 2012
  • The next-generation wireless communication requires fast transmission speeds with various services and high reliability. In order to satisfy these needs we study MIMO system used layered space time coded system (LST) combining space time trellis codes (STTC) with turbo codes. In LST, two codes that are inner and outer codes are concatenated in the serial fashion. The inner codes are turbo Pi codes suggested in DVB-RCS NG system, and outer codes are STTC codes proposed by Blum. The interleaver technique is used to efficiently combine two codes. And we proposed and simulated that a full iteration method between turbo decoder and BCJR decoder to improve the performance instead of only processing inner-iteration turbo decoder. The simulation results of proposed effective layered method show improving BER performance about 1.3~1.5dB than conventional one.

Turbo Coded OFDM Scheme for a High-Speed Power Line Communication (고속 전력선 통신을 위한 터보 부호화된 OFDM)

  • Kim, Jin-Young;Koo, Sung-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.141-150
    • /
    • 2010
  • In this paper, performance of a turbo-coded OFDM system is analyzed and simulated in a power line communication channel. Since the power line communication system typically operates in a hostile environment, turbo code has been employed to enhance reliability of transmitted data. The performance is evaluated in terms of bit error probability. As turbo decoding algorithms, MAP (maximum a posteriori), Max-Log-MAP, and SOVA (soft decision viterbi output) algorithms are chosen and their performances are compared. From simulation results, it is demonstrated that Max-Log-MAP algorithm is promising in terms of performance and complexity. It is shown that performance is improved 3dB by increasing the number of iterations, 2 to 8, and interleaver length of a turbo encoder, 100 to 5000. The results in this paper can be applied to OFDM-based high-speed power line communication systems.

Design of a Logic eFuse OTP Memory IP (Logic eFuse OTP 메모리 IP 설계)

  • Ren, Yongxu;Ha, Pan-bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.317-326
    • /
    • 2016
  • In this paper, a logic eFuse (electrical Fuse) OTP (One-Time Programmable) memory IP (Intellectual Property) using only logic transistors to reduce the development cost and period of OTP memory IPs is designed. To secure the reliability of other IPs than the OTP memory IP, a higher voltage of 2,4V than VDD (=1.5V) is supplied to only eFuse links of eFuse OTP memory cells directly through an external pad FSOURCE coming from test equipment in testing wafers. Also, an eFuse OTP memory cell of which power is supplied through FSOURCE and hence the program power is increased in a two-dimensional memory array of 128 rows by 8 columns being also able to make the decoding logic implemented in small area. The layout size of the designed 1kb eFuse OTP memory IP with the Dongbu HiTek's 110nm CIS process is $295.595{\mu}m{\times}455.873{\mu}m$ ($=0.134mm^2$).

Study on algorithm of blind modulation detector in EDGE systems (EDGE 시스템에서 블라인드 변조 검출기의 알고리즘에 관한 연구)

  • Park, Hong-Won;Moon, Hong-Youl;Woo, Sung-Hyun;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.67-71
    • /
    • 2010
  • In this study, an algorithm for blind modulation detection in EDGE systems is presented. EDGE introduces an 8PSK modulation to provide high-speed data rates in addition to the existing GSM system. A transmitter may switch dynamically the modulation and coding schemes for transmission of data according to the channel quality. To decode the data correctly, the receiver has to detect using only training sequence which modulation is being used. Basically the property of one radio block composed of four bursts to detect effectively the modulation scheme even under severe conditions is used. More specifically, the reference value calculated for received burst is accumulated with previous reference value to minimize statistically the false detection probability in one radio block. Also each burst data having different modulation from the modulation of the fourth burst is set to zero to improve the decoding performance because the reference of the fourth burst has the highest reliability.

Turbo Perallel Space-Time Processing System with LDPC Code in MIMO Channel for High-Speed Wireless Communications (MIMO 채널에서 고속 무선 통신을 위한 LDPC 부호를 갖는 터보 병렬 시공간 처리 시스템)

  • 조동균;박주남;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.923-929
    • /
    • 2003
  • Turbo processing have been known as methods close to Shannon limit in the aspect of wireless multi-input multi-output (MIMO) communications similarly to wireless single antenna communication. The iterative processing can maximize the mutual effect of coding and interference cancellation, but LDPC coding has not been used for turbo processing because of the inherent decoding process delay. This paper suggests a LDPC coded MIMO system with turbo parallel space-time (Turbo-PAST) processing for high-speed wireless communications and proposes a average soft-output syndrome (ASS) check scheme at low signal to noise ratio (SNR) for the Turbo-PAST system to decide the reliability of decoded frame. Simulation results show that the suggested system outperforms conventional system and the proposed ASS scheme effectively reduces the amount of turbo processing iterations without performance degradation from the point of average number of iterations.

Development of the Command and Data Handling System and Flight Software of BITSE

  • Park, Jongyeob;Baek, Ji-Hye;Jang, Bi-ho;Choi, Seonghwan;Kim, Jihun;Yang, Heesu;Kim, Jinhyun;Kim, Yeon-Han;Cho, Kyung-Suk;Swinski, Joseph-Paul A.;Nguyen, Hanson;Newmark, Jeffrey S.;Gopalswamy, Natchumuthuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.57.4-57.4
    • /
    • 2019
  • BITSE is a project of balloon-borne experiments for a next-generation solar coronagraph developed by a collaboration with KASI and NASA. The coronagraph is built to observe the linearly polarized brightness of solar corona with a polarization camera, a filter wheel, and an aperture door. For the observation, the coronagraph is supported by the power distribution unit (PDU), a pointing system WASP (Wallops Arc-Second Pointer), telemetry & telecommand system SIP (Support Instrument Package) which are developed at NASA's Goddard Space Flight Center, Wallops Flight Facility, and Columbia Scientific Balloon Facility. The BITSE Command and Data Handling (C&DH) system used a cost-off-the-shelf electronics to process all data sent and received by the coronagraph, including the support system operation by RS232/422, USB3, Ethernet, and digital and analog signals. The flight software is developed using the core Flight System (cFS) which is a reusable software framework and set of reusable software applications which take advantage of a rich heritage of successful space mission of NASA. The flight software can process encoding and decoding data, control the subsystems, and provide observation autonomy. We developed a python-based testing framework to improve software reliability. The flight software development is one of the crucial contributions of KASI and an important milestone for the next project which is developing a solar coronagraph to be installed at International Space Station.

  • PDF

Implementation of Turbo Decoder Based on Two-step SOVA with a Scaling Factor (비례축소인자를 가진 2단 SOVA를 이용한 터보 복호기의 설계)

  • Kim, Dae-Won;Choi, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.14-23
    • /
    • 2002
  • Two implementation methods for SOVA (Soft Output Viterbi Algorithm)of Turbo decoder are applied and verfied. The first method is the combination of a trace back (TB) logic for the survivor state and a double trace back logic for the weight value in two-step SOVA. This architecure of two-setp SOVA decoder allows important savings in area and high-speed processing compared with that of one-step SOVA decoding using register exchange (RE) or trace-back (TB) method. Second method is adjusting the reliability value with a scaling factor between 0.25 and 0.33 in order to compensate for the distortion for a rate 1/3 and 8-state SOVA decoder with a 256-bit frame size. The proposed schemes contributed to higher SNR performance by 2dB at the BER 10E-4 than that of SOVA decoder without a scaling factor. In order to verify the suggested schemes, the SOVA decoder is testd using Xillinx XCV 1000E FPGA, which runs at 33.6MHz of the maximum speed with 845 latencies and it features 175K gates in the case of 256-bit frame size.

An Active Queue Management Algorithm Based on the Temporal Level for SVC Streaming (SVC 스트리밍을 위한 시간 계층 기반의 동적 큐 관리 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.425-436
    • /
    • 2009
  • In recent years, the user demands have increased for multimedia service of high quality over the broadband convergence network. These rising demands for high quality multimedia service led the popularization of various user terminals and large scale display equipments, which needs a variety type of QoS (Quality of Service). In order to support demands for QoS, numerous research projects are in progress both from the perspective of network as well as end system; For example, at the network perspective, QoS guaranteeing by improving of internet performance such as Active Queue Management, while at the end system perspective, SVC (Scalable Video Coding) encoding scheme to guarantee media quality. However, existing AQM algorithms have problems which do not guarantee QoS, because they did not consider the essential characteristics of video encoding schemes. In this paper, it is proposed to solve this problem by deploying the TS- AQM (Temporal Scalability Active Queue Management) which employs the differentiated packet dropping for dependency of the temporal level among the frames, based on SVC encoding characteristics by exploiting the TID (Temporal ID) field of the SVC NAL unit header. The proposed TS-AQM guarantees multimedia service quality through video decoding reliability for SVC streaming service, by differentiated packet dropping when congestion exists.

An Efficient Dissemination Protocol for Remote Update in 6LoWPAN Sensor Network (6LoWPAN상에서 원격 업데이트를 위한 효율적인 코드 전파 기법)

  • Kim, Il-Hyu;Cha, Jung-Woo;Kim, Chang-Hoon;Nam, In-Gil;Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • In IP-based wireless sensor networks (WSNs), it might be necessary to distribute application updates to the sensor nodes in order to fix bugs or add new functionality. However, physical access to nodes is in many cases extremely limited following deployment. Therefore, network reprogramming protocols have recently emerged as a way to distribute application updates without requiring physical access to sensor nodes. In order to solve the network reprogramming problem over the air interface, this thesis presents a new scheme for new update code propagation using fragmentation scheme and network coding. The proposed code propagation method roughly shows reduced performance improvement in terms of the number of data exchange compared with the previously proposed pipelining scheme. Further, It is shows enhanced reliability for update code propagation and reduced overhead in terms of the number of data exchange. As a result, we can efficiently perform the software update from the viewpoint of speed, energy, and network congestion when the proposed code propagation system is applied. In addition, the proposed system solves overhearing problems of network coding such as the loss of original messages and decoding error using the predefined message. Therefore, our system allows a software update system to exchange reliable data in wireless sensor networks.