• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.033 seconds

An algorithm for evaluating time-related human reliability using instrumentation cues and procedure cues

  • Kim, Yochan;Kim, Jaewhan;Park, Jinkyun;Choi, Sun Yeong;Kim, Seunghwan;Jung, Wondea;Kim, Hee Eun;Shin, Seung Ki
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.368-375
    • /
    • 2021
  • The performance time of human operators has been recognized as a key aspect of human reliability in socio-complex systems, including nuclear industries. Because of the importance of the time factor, most existing human reliability assessment methods provide ways to quantify human error probabilities (HEPs) that are associated with the performance time. To quantify such kinds of HEPs, it is crucial to rationally predict the length of time required and time available and compare them. However, there have not been detailed guidelines that identify the critical cue presentation time or initial time of human performance, which is important to calculate the time information. In this paper, we introduce a time-related HEP calculation technique with a decision algorithm that determines the critical cue and its timing. The calculation process is presented with the application examples. It is expected that the proposed algorithm will reduce the variability in the time-related reliability assessment and strengthen the scientific evidence of the assessment process. The detailed description is provided in the technical report KAERI/TR-7607/2019.

Performance analysis of the passive safety features of iPOWER under Fukushima-like accident conditions

  • Kang, Sang Hee;Lee, Sang Won;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.676-682
    • /
    • 2019
  • After the Fukushima Daiichi accident, there has been an increasing preference for passive safety features in the nuclear power industry. Some passive safety systems require limited active components to trigger subsequent passive operation. Under very serious accident conditions, passive safety features could be rendered inoperable or damaged. This study evaluates (i) the performance and effectiveness of the passive safety features of iPOWER (innovative Power Reactor), and (ii) whether a severe accident condition could be reached if the passive safety systems are damaged, namely the case of heat exchanger tube rupture. Analysis results show that the reactor coolant system remains in the hot shutdown condition without operator actions or electricity for over 72 h when the passive auxiliary feedwater systems (PAFSs) are operable without damage. However, heat exchanger tube rupture in the PAFS leads to core damage after about 18 h. Such results demonstrate that, to enhance the safety of iPOWER, maintaining the integrity of the PAFS is critical, and therefore additional protections for PAFS are necessary. To improve the reliability of iPOWER, additional battery sets are necessary for the passive safety systems using limited active components for accident mitigation under such extreme circumstances.

Reliability-Based Design of Sight Distance, a Revisit (신뢰성을 고려한 도로 시거 설계의 제고)

  • Lee, Seul-Gi;Lee, Yong-Jae;Kim, Sang-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.121-131
    • /
    • 2006
  • Considering characteristics of drivers and vehicles with proper and reliable ways in highway design Procedures can ensure high level of highway safety. However, it is almost impossible to take into account all factors of drivers and vehicles influencing on the highway safety because of their uncertain and random nature. To detour the dead-end, the nature are usually assumed as simple homogeneous and deterministic one. Although the restricted assumption makes the system simple, it can produce serious problems due to lack of considering variability in the system. This paper develops a reliability-based method for determining stopping sight distance(SSD) and intersection sight distance (ISD), which are crucial elements in highway alignment design. In the study, Hasofer-Lind method is adopted. which is a well-known first-order second moment reliability method (AFOSM) The results in this study show that if mean, variance, and distribution of a particular driver-vehicle parameter are known, more reliable sight distances can be applied in highway design procedures because we can reflect uncertainties and randomness. Thus, the Probabilistic method could be adopted in designing the sight distance(s) with the desired reliability level.

A Validity Study of the Korean Version of the Interprofessional Attitudes Scale (전문직 간 태도에 대한 한국어판 측정도구의 타당화 연구)

  • Park, Kwi Hwa;Park, Kyung Hye;Kwon, Oh Young;Kang, Youngjoon
    • Korean Medical Education Review
    • /
    • v.22 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • Concern for patient safety underlies the need for interprofessional education (IPE). One way to measure the effectiveness of IPE is by measuring attitude change toward other healthcare professionals; however, there are currently no valid Korean tools to measure such a change in attitudes. Therefore, this study aims to develop and test a Korean version of the Interprofessional Attitudes Scale (IPAS). The original IPAS was translated into Korean according to the World Health Organization's guidelines after obtaining permission from the article's corresponding author. A total of 414 questionnaires were collected from third- and fourth-year medical and nursing students at four Korean institutions in December 2018. To analyze the validity of the Korean IPAS, exploratory and confirmatory factor analyses were conducted. Cronbach's α was used to evaluate reliability. Results from the exploratory factor analysis identified four functions: teamwork, community-centeredness, patient-centeredness, and respect for diversity. Significant cross-correlations were found among the four functions (r=0.438-0.631, p<0.001) along with overall reliability (Cronbach's α=0.929) and reliability of each subfactor (Cronbach's α=0.804-0.897). This study verified the validity and reliability of the Korean version of the IPAS, so this scale can be used in the future to measure the effectiveness of IPE in Korea.

Analysis of Performance Influencing Factor in Chemical Process Industry : A Practical Application (석유화학 산업에서의 수행영향인자 및 근본원인 분석 결과)

  • Yu, Kwang-Soo;Kim, Eun-Jung;Kim, Yong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.60-64
    • /
    • 2007
  • Chemical Process industry in Korea has over 30 year's of history and is likely to face potential incidents. The traditional risk analysis and control system in Chemical Process industry focuses on mechanical defects, overlooking the human performance control. Although development of automation technology and controlling technology was necessary, human decision factor is essential to preventing accidents in the Chemical Process. Almost all serious accidents take place when inappropriate humanperformance and mechanical defects of safety equipments simultaneously occurs. The AHRA(Advanced Human Reliability Analyzer) software has been developed to collect failure data and analyze human error probability (Reliability) in Chemical Process Industry in Korea. This paper describes the HRA analysis result of PIF(Performance Influencing Factor) evaluation, HEP(Human Error Probability) and root cause of accidents by applying a Chemical Process Industry related accident data. This analysis result should present a scheme that, by controlling human error factor other than putting safety management funds into the machinery in plants, can reduce cost and maximize the safety in Chemical Process Industry.

  • PDF

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

  • Bucknor, Matthew;Grabaskas, David;Brunett, Acacia J.;Grelle, Austin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.360-372
    • /
    • 2017
  • Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

Study on the Reliability Analysis of Wood Floor System Exposed to Fire (화염에 노출된 목재 마루 시스템의 신뢰성 해석에 관한 연구)

  • Kim, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.66-74
    • /
    • 2004
  • Fire performance is the important criterion for evaluating of safety of wood structures which exposed to the standard fire condition. Endurance time and time-to-failure are used as the criteria for fire performance in many countries. Reliability analysis about wood floor system which exposed to fire was carried out as preliminary research for reliability-based design on fire. Analyses were conducted by two methods, numerical analysis method and deterministic method.. They didn't show the difference between two methods. The reliability of floor exposed to fire showed strong dependence on the coefficient of variation of member and did not be influenced by the strength or load of member.

Development and Performance Test of Online Electrical Safety Monitoring System Applying an Algorithm to Measure Resistive Leakage Currents using Phase Differences (위상차를 이용한 저항성 누설전류 측정 알고리즘을 적용한 온라인 전기안전 감시시스템의 개발 및 성능시험)

  • Yoo, Jeong Hyun;Kim, Hie Sik;Jeong, Yong Wook
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.27-32
    • /
    • 2018
  • Nowadays, to prevent electrical accidents in Korea, inspectors directly performed checking general electrical facilities as a cycle from every one to three years. It is difficult to presuppose an omen because intact conditions of electrical equipments are not kept at the time of inspection. In this paper, in order to ensure effectiveness of an online basis electric inspection, we developed an electrical safety IoT system using LoRa communication technology to enable monitoring mainly electrical safety components such as overcurrent, overvoltage, resistive leakage current, and power. Then we proposed a method for verifying performances of the prosed electrical safety IoT system. Resistive leakage currents are calculated by using difference of phase between voltages and currents. We verified that average errors are 0.97%, which reference goal is ${\pm}5%$ for a device, through reliability test according to conditions. Results of this research can be used as basic study materials to develop technologies for measuring three phase leakage current and for implementing public electrical safety. platform.

Reliability Analysis on Firewater Supply Facilities based on the Probability Theory with Considering Common Cause Failures (소방수 공급설비에 대한 공통원인고장을 고려한 확률론적 신뢰도 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.76-85
    • /
    • 2003
  • In this study, we write down the definitions, their causes and the techniques of analysis as a theoretical consideration of common cause failures, and investigate the limitation and the importance of the common cause failures by applying to the analysis on the fire protection as a representative safety facility. As you can know in the reliability analysis, most impressive cause is the malfunctions of pumping operations; especially the common cause failure of two pumps is dominant. In other words, it is possible to assess system-reliability as twice as actual without CCF From these, CCF is extraordinarily important and the results are highly dependent on the CCF factor. And although it would increase with multiple installations, the reliability are not defined as linear with those multiplications. In addition, the differences in results due to the models for analysis are not significant, whereas the various sources of data produce highly different results. Therefore, we conclude that the reliabilities are dependent on the quality of the usable data much better than the variety of models. As a result, the basic and engineering device for the preventions of CCF of the multiple facilities is to design it as reliably as to design the fire-water pump. That is to say, we must assess those reliabilities using PFD whether they are appropriate to SIL (Safety Integrity Level) which is required for the reliability in SIS (Safety Instrumented System). The result of the analysis on the reliability of the fire-water supply with CCF shows that PFD is 3.80E-3, so that it cannot be said to be designed as safely as in the level of SIL5. However, without CCF, PFD is 1.82E-3 which means that they are designed as unsafely as before.