• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.03 seconds

Reliability-based Approach to Optimal Economic Estimation of Concrete Cover Thickness under Carbonation Environment

  • Do, Jeong-Yun;Kim, Doo-Kie;Song, Hun;Jo, Young-Kug
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • Concrete carbonation is a cause of problems in concrete structures, so it needs to be estimated. And concrete cover is designed to protect structures from this damaging. Usually the cover thickness is considered based on the limit states design codes in which the important target is the reliability safety index. However, it is not clear that whether the safety index determined is optimal or not with respect to the cost. The codes are mainly proceeded quantitatively (i.e. making a safe structure) while the economic aspects are only considered qualitatively. So the reliability-based design considering life cycle cost (LCC) is called for, and here the focus is on the advanced analysis solution to optimize the reliability safety regarding LCC.

Optimization of preventive maintenance of nuclear safety-class DCS based on reliability modeling

  • Peng, Hao;Wang, Yuanbing;Zhang, Xu;Hu, Qingren;Xu, Biao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3595-3603
    • /
    • 2022
  • Nuclear safety-class DCS is used for nuclear reactor protection function, which is one of the key facilities to ensure nuclear power plant safety, the maintenance for DCS to keep system in a high reliability is significant. In this paper, Nuclear safety-class DCS system developed by the Nuclear Power Institute of China is investigated, the model of reliability estimation considering nuclear power plant emergency trip control process is carried out using Markov transfer process. According to the System-Subgroup-Module hierarchical iteration calculation, the evolution curve of failure probability is established, and the preventive maintenance optimization strategy is constructed combining reliability numerical calculation and periodic overhaul interval of nuclear power plant, which could provide a quantitative basis for the maintenance decision of DCS system.

A Study on the Reliability Improvement of LRT(Light Rail Transit) (경량전철시스템 신뢰성 향상방안)

  • Kim Jong-Gurl;Han Suk-Yun;Jun Bong-Roong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.269-276
    • /
    • 2004
  • Special, high technology developments and systems improvements become more necessary as the industrial society is becoming complex. When some systems are developed, it is common that developed systems have low-reliability in infant period. Some developed systems need tests to improve their reliability up to the respected level before adapting them. This paper aims at showing the testing program including the reliability growth model for reliability improvement of the Light Rail Transit

  • PDF

A Study on the Reliability Analysis of Al Oil Pressure Switch for Automobiles (Al 소재의 자동차용 Oil Pressure Switch의 신뢰도 분석에 관한 연구)

  • Cho, Myung-Ho;Kim, Tae-Hun;Rhie, Kwang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.150-156
    • /
    • 2009
  • The oil pressure switch(OPS) for automobile is very important part to prevent an overheated engine and other problems by checking the operation of an engine oil system and displaying oil signs on a dashboard. OPS is the part that receives various stress caused by temperature, vibration, and corrosion in an engine room. Regarding existing steel OPS cases, there occur field errors due to the rust, and much concern comes from the low anticorrosion caused by CR6+ Free according to the restrictions of heavy metals. Therefore, the study analyzed average life, the failure rate, and reliability through the tests of performance according to temperature changes, mechanical strength, and run-test in order to confirm if the use of the oil pressure switch with Al of anti-corrosion can improves the reliability, instead of the existing steel products.

Prediction of Safety Critical Software Operational Reliability from Test Reliability Using Testing Environment Factors

  • Jung, Hoan-Sung;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • It has been a critical issue to predict the safety critical software reliability in nuclear engineering area. For many years, many researches have focused on the quantification of software reliability and there have been many models developed to quantify software reliability. Most software reliability models estimate the reliability with the failure data collected during the test assuming that the test environments well represent the operation profile. User's interest is however on the operational reliability rather than on the test reliability. The experiences show that the operational reliability is higher than the test reliability. With the assumption that the difference in reliability results from the change of environment, from testing to operation, testing environment factors comprising the aging factor and the coverage factor are developed in this paper and used to predict the ultimate operational reliability with the failure data in testing phase. It is by incorporating test environments applied beyond the operational profile into testing environment factors. The application results show that the proposed method can estimate the operational reliability accurately.

  • PDF

Application of Target Reliability Levels for Maintenance of Domestic Natural Gas Pipelines (국내 천연가스배관 유지관리를 위한 목표신뢰도 적용사례)

  • Lee, Jin-Han;Kim, Jeong-Hwan;Jo, Young-Do;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • Reliability based design and assessment (RBDA) methodology is one of the newest directions of natural gas pipeline design method. Reliability targets are used to ensure that safety levels are met relevant limit states in the stage of design and maintenance. The target reliability for ultimate limit states such as large leak and rupture were developed using tolerable risk criteria for individual and societal risk. This paper shows the reliability target can be met through the implementation of periodic maintenance measures during the life cycle of the pipelines. The case study involves the calculation of the failure probability due to equipment impact, the calculation of the failure probability due to corrosion, and the estimation the re-inspection interval for domestic natural gas transmission pipelines.

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

A Reliability Analysis on the To-Box Reinforcement Method of PSC Beam Bridges (PSC보의 박스화 보강방법의 신뢰성해석)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.94-100
    • /
    • 2006
  • The goal of this study is to show the way to increase the safety of deteriorated PSC beam bridges by the to-box reinforcing method. This method is to change the open girder section into the closed box section by connecting bottom flanges of neighboring PSC girders with the precast panels embedding PS tendons at the anchor block. The box section is composed of three concrete members with different casting ages, RC slab, PSC beam, precast panel. This different aging requires a time-dependent analysis considering construction sequences. Reliability index and failure probability are produced by the AFOSM reliability analysis. Transversely five schemes and longitudinally two schemes are considered. The full reinforcing scheme, transversely and longitudinally, shows the highest reliability index, but it requires more cost for retrofit. The partial reinforcing scheme 4, 4-1 are recommended in this study as the economically best scheme.

Evaluation of Human Reliability Analysis Results in Probabilistic Safety Assessment for Korea Standard Nuclear Power Plants (표준 원자력발전소 확률론적 안전성 평가의 인간 신뢰도 분석 평가)

  • 강대일;정원대;양준언
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • Based on ASME probabilistic risk assessment (PRA) and NEI PRA peer review guidance, we evaluate a human reliability analysis (HRA) in probabilistic safety assessment (PSA) for Korea standard nuclear power plants, Ulchin Unit 3&4, to improve it performed at under design. The HRA for Ulchin Unit 3&4 is assessed as higher than Grade I based on ASME PRA standard and as higher than Grade 2 based on NEI PRA peer review guidance. The major items to be improved identified through the evaluation process are the documentation, the systematic human reliability analysis, the participitation of operators in the works and review of HRA. We suggest the guidance on the identification and qualitative screening analysis for pre-accident human errors and solve some items to be improved using the suggested guidance.

Synthesizing Failure Data of Pump in PCB Manufacturing using Bayesian Method (베이지안 방법을 이용한 PCB 제조공정의 펌프 고장 데이터 합성)

  • Woo, Jeong Jae;Kim, Min Hwan;Chu, Chang Yeop;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2020
  • Failure data that has systematically managed for a long time has high reliability to an estimated volume. But since much cost and effort are needed to secure reliability data, data from overseas country is used in quantitative risk analysis in many workplaces. Reliability of the data that can be collected in workplaces can be dropped because of insufficient sample or lack of observation time. Therefore, estimated data is difficult to use as it is and environment and characteristic of the workplace cannot be reflected by using data from overseas country. So this study used Bayesian method that can be used reflecting both reliability data from overseas country and workplace failure data that has less samples. As a setting toward difficult situation that securing sufficient failure data cannot be achieved, we composed workplace failure data equivalent to mass observation time 20%(t=17000), 40%(t=24000), 60%(t=31000), 80%(t=38000) and IEEE data by using Bayesian method.