• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.033 seconds

Seismic Fragility Evaluation of Cable Supported Bridges Based on Probability Distribution Using Safety Factors of Structural Members (안전율 확률분포에 근거한 케이블지지교량 주요부재의 내진성능 취약도 평가)

  • Park, Jin-Woo;Kim, Chang-Sung;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.37-44
    • /
    • 2019
  • The purpose of this study is to rationally determine the priority of seismic reinforcement of main(key) members of bridges. Cable Supported bridge was selected as the evaluation target and the reliability based on the probability distribution was used to evaluate the seismic fragility of the key members as a quantitative indicator. The safety factor, which is a random variable, is considered an artificial (fixed load and live load) load and a natural (earthquake, wind, temperature, etc.) load. The seismic load is applied as a possible earthquake during the lifetime of the bridge. From analyzing the fragility of each key member based on the seismic reliability, it can be concluded that the shoe (23.8%) was the most fragile, where the other members are ranked as place concrete (20.5%), pier (18.9%), foundation (17.3%) and cable (5.0%) respectively.

A Selection Methodology for Reliability Allocation Models to Minimize the Operating Cost (운영유지비용을 고려한 신뢰도 할당 모형의 선정)

  • Park, Jong-Hwa;Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.3
    • /
    • pp.31-45
    • /
    • 2009
  • Reliability should be done from the initial stage of development to secure performance and safety of system. To establish and achieve target reliability of a system, reliability should be allocated into the subsystems. In the acquisition and development of a system, frequent failures will cause a negative effect on performing mission and occurs increasing operating cost. This study reviewed and evaluated the existing reliability allocation models using operation and maintenance costs to find the correlation between reliability allocation models and its operating cost. A target system reliability on the diesel engine to be developed for naval vessels is allocated into its subsystem based on the existing reliability allocation models. A selection methodology for reliability allocation models was made to minimize operating cost by using simulation based on the given operating diesel engine data for naval vessels.

Reliability analysis on fatigue Strength for Certification of Aircraft Composite Structures

  • Choi, Cheong Ho;Lee, Doo Jin;Jo, Jae Hyun;Bae, Sung Hwan;Lee, Myung Jik;Lee, Jong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.16-25
    • /
    • 2021
  • Reliability of fatigue strength on Aircraft Composites(GFRP) Structures was assessed in this paper. Fatigue strength of GFRP was used through the existing fatigue test data with Monte Carlo method. The Sa-Nf curve of composites fatigue strength was assumed as normal distribution and reliability was analyzed using SSIT model. Fatigue stress was designed IAW ASTM F3114-15 with special safety factor of Ssf=1.2~2.0. Reliability was calculated by analytic method and FORM. Sensitivity for the effect of mean and standard deviation of fatigue strength as well as fatigue stability was evaluated. This result can be usefully applied to reliability and fatigue design for composite structures of light weight aircraft.

Sensitivity Analysis by Parametric Study of Load Factor for a Concrete Box Girder Railway Bridge Using Limit State Design

  • Yeo, Inho;Sim, Hyung-Bo;Kim, Daehwan;Kim, Yonghan
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.5-9
    • /
    • 2015
  • Reliability based limit state design method is replacing traditional deterministic designs such as allowable stress design and/or ultimate strength design methods in world trends. European design code(Eurocode) has adopted limit state design, and Korea road bridge design standard has also recently been transferred to limit state design method. In this trend, Korea railroad design standard is also preparing for adopting the same design concept. While safety factors are determined empirically in traditional design, load combinations as well as load factors are determined by solving limit state equations. General partial safety factors are evaluated by using AFORM(Advanced First Order Reliability Method) in the reliability based limit state design method. In this study sensitivity analysis is carried out for a dead load factor and a live load factor. Relative precisions of the dead load and the live load factors are discussed prior to the AFORM analysis. Furthermore the sectional forces of design and the material quantities required by two different design methods are compared for a PSC box girder railway bridge.

A Study on the reliability method development for the LCC analysis (LCC분석에 있어서 신뢰성기법 활용에 관한 연구)

  • Lee, J.B.;Cho, S.H.;Min, B.C.;Hong, D.Y.;Lee, W.J.
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.319-328
    • /
    • 2011
  • The failure of LCC analysis is recognized as a serious risk for companies in fast-paced business environment. LCC analysis has been mentioned and analyzed only in accounting perspectives, but recently engineering perspectives of LCC analysis based on the execution of appropriate procedures become more important than the accounting perspectives. Especially, the practical use of reliability engineering related methodologies is recognized as a key factor for the LCC analysis. For the practical use of reliability methods, LCC analysis for unexposed problems is a key issue, and utilizing FMEA and FTA techniques is needed to solve the unexposed problems. Reliability, maintainability, availability, and safety should be evaluated by the LCC analysis with the reliability methods, so we study methodologies for the LCC analysis. Present Worth can be calculated by multiplication of Annual Equivalent Cost and PWAF. Reliability engineering related methods are needed for the process of dividing Present Worth into PWAF, and the practical use of reliability methods can improve accuracy of LCC analysis.

  • PDF

통합신뢰성 시험조건에 관한 연구

  • 전영록;김종걸;이낙영;홍연웅;권영일;나명환
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.149-160
    • /
    • 2001
  • The components of dependability are reliability, availability, maintainability, safety. The dependability thus often designated in terms of RAMS. International Standard IEC 60300 Dependability Management Part 3-5(IEC 60300-3-5) involves application guides of Reliability test conditions and Statistical test principles. This report presents the basic concepts of IEC 60300-3-5 and explanation of its detailed clauses.

  • PDF

A Study Fuzzy model for Risk Analysis of Uncertainly FTA(Fault Tree Analysis) (FTA(Fault Tree Analysis)에서 불확실한 위험분석을 위한 퍼지모형 연구)

  • 임총규;박주식;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Risk analysis is a formal deductive procedure for determining combinations of component failures and human errors that could result in the occurrence of specified undesired events at the system level. This method can be used to analyze the vast majority of industrial system reliability problems. This study deals with the application of knowledge-engineering and a methodology for the assessment & measurement of reliability, availability, maintainability, and safety of industrial systems using FTA(fault tree analysis), A fuzzy methodology for fault-tree evaluation seems to be an alternative solution to overcome the drawbacks of the conventional approach (insufficient Information concerning the relative frequencies of hazard events). To improve the quality of results, the membership functions must be approximated based on heuristic considerations, The purpose of this study is to describe the knowledge engineering approach, directed to integrate the various sources of knowledge involved in a FTA.

A Study on Fault Diagnostic Model for Behaviour Appearance of Components (부품의 가동형태에 따른 고장진단 모델 연구)

  • 박주식;하정호;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.97-108
    • /
    • 2002
  • This study deals with the application of knowledge-based engineering and a methodology for the assessment & measurement of reliability, availability, maintainability, and safety of industrial systems using fault-tree representation. A fuzzy methodology for fault-tree evaluation seems to be an alternative solution to overcome the drawbacks of the conventional approach. To improve the quality of results, the membership functions must be approximated based on heuristic considerations. Conventionally, it is not always easy to obtain a system reliability for components with different individual failure probability density functions(p.d.f.), We utilize fuzzy set theory to solve the adequacy of the conventional probability in accounting and processing of built-in uncertainties in the probabilistic data. The purpose of this study is to propose the framework of knowledge-based engineering through integrating the various sources of knowledge involved in a FTA.

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

Comparative analysis of caisson sections of composite breakwaters evaluated by Level I reliability-based design method (Level I 신뢰성 기반 설계법에 의해 산정된 혼성제 케이슨 단면의 비교 분석)

  • Lee, Cheol-Eung;Park, Dong Heon;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.543-554
    • /
    • 2018
  • A methodology has been presented for evaluating the partial safety factors on the sliding failure mode of vertical caissons of composite breakwaters and for determining the cross sections of those by Level I reliability-based design method. Especially, a mathematical model has been suggested for the sake of a consistency of code format as well as convenience of application in practical design, for which the uncertainties associated with buoyancy and its own weight can be taken into account straightforwardly. Furthermore, design criteria equation has been derived by considering accurately the effect of uplift pressure, so that the cross sections of caissons can be assessed which must be safe against the sliding failure. It has been found that cross sections estimated from partial safety factors proposed in this paper are in very good agreement with the results of Level II AFDA and Level III MCS under the same target probability of failure. However, partial safety factors of the Technical Standards and Commentaries for Port and Harbour Facilities in Japan and Coastal Engineering Manual in USA tend to estimate much bigger or smaller cross sections in comparison to the present results. Finally, many reliability re-analyses have been performed in order to conform whether the stability level of cross section estimated by Level I reliability-based design method is satisfied with the target probability of failure of partial safety factors or not.