• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.031 seconds

A Study on the Analysis of Operation Reliability of Fire Doors and Fire Shutters Using Fire Statistical Data (화재통계자료를 활용한 방화문, 방화셔터 작동신뢰성 분석에 관한 연구)

  • Jin, Seung-hyeon;Kim, Hye-Won;Seo, Dong-Goo;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.119-120
    • /
    • 2020
  • In order to establish an evaluation method that can quantitatively evaluate the fire safety of existing buildings in Korea, a stochastic approach is needed to consider the extent of damage in the event of actual fire, along with the operation and installation of facilities. Accordingly, as a basic study for the establishment of fire safety assessment methods for buildings, this study aims to analyze the results of safety inspection and the degree of damage caused by the operation of fire doors and fire shutters in order to derive the reliability of fire doors and fire shutters. As a result, the results of inspection of fire shutters and fire doors and the results of operation using fire statisticians are as follows. As a result of the inspection, the positive rate of fire doors was about 82% and 98% of normal operation was derived from the fire investigation.

  • PDF

Reliability Evaluation of a Pin Puller via Monte Carlo Simulation

  • Lee, Hyo-Nam;Jang, Seung-gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.537-547
    • /
    • 2015
  • A Monte Carlo (MC) simulation was conducted to predict the reliability of a newly developed pyrotechnic pin puller. The reliability model is based on the stress-strength interference model that states that failure occurs if the stress exceeds the strength. In this study, the stress is considered to be the energy consumed by movement of a pin shaft, and the strength is considered to be the energy generated by pyrotechnic combustion for driving the pin shaft. Failure of the pin puller can thus be defined as the consumed energy being greater than the generated energy. These energies were calculated using a performance model formulated in the previous study of the present authors. The MC method was used to synthesize the probability densities of the two energies and evaluate the reliability of the pin puller. From a probabilistic perspective, the calculated reliability was compared to a deterministic safety factor. A sensitivity analysis was also conducted to determine which design parameters most affect the reliability.

Reliability Analysis of Plane Failure in Rock Slope (암반사면의 평면파괴에 대한 신뢰성해석)

  • 장연수;오승현;김종수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.119-126
    • /
    • 2002
  • A reliability analysis is performed to investigate the influence of the uncertainty from few in-situ samples and inherent heterogeneity of the ground on the probability of failure for a rock cut slope. The results are compared with those of deterministic slope stability analysis. The random variables used are unit weight of the rock, the angle of potential slope of failure, and cohesion and internal friction angle of joints. It was found that the rock slope in which the factor of safety satisfied the minimum safety factor in the deterministic analysis has high probability of failure in the reliability analysis when the weak geological strata are involved in the cut slope. The probability of failure of rock slope is most sensitive to the mean and standard deviation of cohesion in rock joint among the random soil parameters included in the reliability analysis. Sensitivities of the mean values are larger than those of standard deviations, which means that accurate estimation of the mean for the in-situ geotechnical properties is important.

The Reliability Analysis for Homogeneous Slope Stability Using Stochastic Finite Element Method (확율유한요소법을 이용한 균질 사면의 신뢰성 해석)

  • 조래청;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.125-139
    • /
    • 1996
  • This study was performed to provide the design method for soil structure which guarantees proper safety with uncertainty of soil parameters. For this purpose, the effect of uncertainty of soil parameters for slope stability was analyzed by Bishop's simplified method and Monte Carlo simulation(MC). And reliability analysis program, RESFEM, was developed by combining elastic theory, MC, FEM, SFEM, and reliability, which can consider uncertainty of soil parameters. For factor of safety(FS) 1.0 and 1.2 by Bishop's simplified method, the probability of failure(Pf) was analyzed with varying coefficient of variation(c.o.v.) of soil parameters. The Pf increased as c.o.v. of soil parameters increased. This implies that FS is not the absolute index of slope safety, and even if FS is same, it has different Pf according to c.o.v. of soil parameters. The RESFEM was able to express the Pf at each element in slope quantitatively according to uncertainty of soil parameters. The variation of Pf with uncertainty of soil parameters was analyzed by RESFEM, and it was shown that the Pf increased as the c.o.v. of soil parameters increased.

  • PDF

Barrier Function Method in Reliability Based Design Optimization (장애함수법에 의한 신뢰성기반 최적설계)

  • Lee, Tae-Hee;Choi, Woon-Yong;Kim, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

A Maintenance Policy Determination of Dependent k-out-of-n:G System with Setup Cost (초기설치비를 고려한 의존적 k-out-of-n:G 시스템의 보전정책 결정)

  • 조성훈;안동규;성혁제;신현재
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.155-162
    • /
    • 1999
  • reliability from components reliability. In this case, it assumes that components failure is mutually independent, but it may not true in real systems. In this study, the mean cost per unit time is computed as the ratio of mean life to the mean cost. The mean life is obtained by the reliability function under power rule model. The mean cost is obtained by the mathematical model based on the inspection interval. A heuristic method is proposed to determine the optimal number of redundant units and the optimal inspection interval to minimize the mean cost per unit time. The assumptions of this study are as following : First, in the load-sharing k-out-of-n:G system, total loads are applied to the system and shared by the operating components. Secondly, the number of failed components affects the failure rate of surviving components as a function of the total load applied. Finally, the relation between the load and the failure rate of surviving components is set by the power rule model. For the practical application of the above methods, numerical examples are presented.

  • PDF

신뢰성이론에 근거한 교량의 활하중모델

  • Oh, Byeong-Hwan;Lee, Hyeong-Jun;Shin, Ho-Sang;Yang, In-Hwan;Yoo, Yeong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.339-343
    • /
    • 1995
  • In assessing the performance of structures such as bridges. the load intensity, load effect analysis and strength parameters are not known with certainty. The aim of structural reliability theory is to account for the uncertainties in evaluating the strength of structural systems or in the calibration of safety factors in structural design codes. The intend of structural reliability theory is to characterize these uncertainties and allow for consistent and rational safety decisions. In this study the rational model considering the live load applied to bridge will be introduced. using the structural reliability theory.

  • PDF

Optimum Reliablity Based Design Criteria for Bridge Cassion Foundation (교량케이슨기초의 최적신뢰성 설계 규준)

  • 손용우;신형우;이증빈;정철원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.79-89
    • /
    • 1992
  • This study is directed to propose a stability analysis and Design Criteria for Bridge Caisson foundations, with Could possibly replace the traditionals W.S.D. provisions of the Current Code, based on the FBOR(Load Factors based on optimum Reliability). The optimum reliability indices(Vertical bearing Capacity : $\beta$opt : 3.19, Lateral bearing Capacity : $\beta$opt= 3.15(ordinary), $\beta$opt : 2.93 (earthquake), Shearing resistance Capacity ; $\beta$opt : 2.87) are Selected as optimal Values Considering our practice base on the Calibration with the current Bridge Caisson foundation design Safety provisions, Load and resistance factors are measure by Using the proposed uncertainties and the Selected optimum reliability indices. furthermore, a set of nominal safety factors are proposed for the U.S.D. design provisions.

  • PDF

The Evaluation of Non-Destructive Formulas on Compressive Strength Using the Reliability Based on Probability (확률 기반의 신뢰도를 이용한 비파괴 압축강도 추정식 평가)

  • Park, Jin-Woo;Choo, Jin-Ho;Park, Gwang-Rim;Hwang, In-Baek;Shin, Yong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • Proposed equation is used many time in calculation of concrete compressive strength using the non-destructive testing at precision safety diagnosis. Most of proposed equation is suggested in abroad and have an error to estimate concrete compressive strength in the domestic. Therefor, proposed equation is low reliability to estimate concrete compressive and it has a significant effect in reliability of precision safety diagnosis. Nevertheless, It is possible to increase the reliability through a number of experiments from this problem that occurs in some localized part. This paper is proposed assessment formula of reliability related core compressive strength to increase the reliability. It is verified that reliability of proposed assessment formula is useful by probabilistic techniques. It is compared with each graphs of concrete compressive strength of proposed equation. It has been found that the present methods are very efficient.

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 2: Robust Performance Assessment (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제2편: 강인 성능 평가)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.115-121
    • /
    • 2012
  • This paper, being the second in a two-part series, presents the robust performance of the proposed design method which can enhance a reliability-based design optimization(RBDO) under the uncertainties of probabilistic models. The robust performances of the solutions obtained by the proposed method, described in the Part 1, are investigated through the parametric studies. A 10-bar truss example is considered, and the uncertain parameters include the number of data observed, and the variations of applied loadings and allowable stresses. The numerical results show that the proposed method can produce a consistent result despite of the large variations in the parameters. Especially, even with the relatively small data set, the analysis results show that the exact probabilistic model can be successfully predicted with optimized design sections. This consistency of estimating appropriate probability model is also observed in the case of the variations of other parameters, which verifies the robustness of the proposed method.