• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.031 seconds

Development of a Signal Conditioner to Improve the Measurement Reliability of a Microseismic Monitoring System (미소진동 모니터링 시스템의 측정 신뢰도 향상을 위한 시그널 컨디셔너 개발)

  • Cheon, Dae-Sung;Han, Cheol-Min;Lee, Jang Baek
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Microseismic monitoring is utilized for the performance verification and safety management of the structure by detecting fine levels of damage. In order to construct a highly reliable microseismic monitoring system, the role of signal conditioner is critical. The signal conditioner helps with accurate data collection and precision control of the device, and performs additional functions such as signal conversion, linearization, and amplification. In this technical report, noise reduction signal conditioner suitable for mining sites was developed and reviewed for the purpose of implementing more precise monitoring by supplementing the previously developed microseismic monitoring system.

Manufacture of High-temperature High-pressure Vessel for Mixed Gas Performance Test via Optimized Design (최적화 설계를 통한 혼합가스 성능시험용 고온 고압 용기의 제작)

  • Ku, Hyoun-Kon;Ryu, Hyung-Min;Ahn, Jae-Woong;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.83-88
    • /
    • 2019
  • In this study, the high-temperature high-pressure vessel was successfully manufactured, which can be used to store pressurized air and to increase the temperature for the mix performance test of high-temperature high-pressure air with coolant (e.g., water). In this research, static structure analysis and transient thermal analysis were performed using the commercial software Midas NFX 2015 R1. Based on the results, the optimized pressure vessel design was carried out. As a result of the optimized design, the minimum stress and minimum weight were found at 120 mm of the vessel thickness, and the optimized pressure vessel was verified. Finally, through manufacture and performance test (e.g., the non-destructive inspection and hydraulic pressure test), the reliability and safety were validated for the designed pressure vessel.

Running performance analysis for the optimization of Korean tilting steering bogie (한국형 틸팅 조향 대차의 성능 최적화를 위한 주행 성능 분석)

  • Jeong, Hoon;Park, Sang-Do
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1736-1746
    • /
    • 2008
  • Because present road traffic reaches to the limitation of its faculty, Korean tilting train was developed to find the solution by increasing the speed of rail road. A tilting train can run on a curved rail at high speed so it improves a speed of a rail transit without constructing a new line. Only minimum modification is necessary for a existing line. According to above requirement, Korean tilting train was developed in 2007 and the try run has been executing since April, 2007 in order to validate its safety and reliability in a service lines. And this test and estimation will be completed in 2009. After completing a try run, main parts of tilting train will be studied again to commercialize and localize including a bogie and its commercial model design will be finalized by 2012. In order to achieve the development target as mentioned above, the study have been done to improve the bogie system. As the first step to design commercialized bogie system, measurements from the try run and a dynamic analysis were used to find problems of present bogie system well. So this project is performed to decide what parts of the bogie should be modified in basis of this result.

  • PDF

Investigation of Effective Maintenance System for the Infra on the Conventional Line Prepared for the Tilting Train Service (틸팅열차 상용화대비 기존선 인프라시스템의 효율적 유지보수체계 검토)

  • Yoo, Keun-Su;Lee, Chang-Hun;An, Gang-Yell;Kim, Joung-Tea
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.79-87
    • /
    • 2008
  • The major objective of this study is to investigate the effective maintenance system for the infrastructure on the conventional lines in which the tilting train runs. In order to the speed-up of conventional lines that have many curve lines, there needs a improvement construction of substructure such as the straight or double track work and so on. But in this case, it needs to have a plenty of the cost and the period. Therefore, the tilting train which provides the high-speed service effectively in curve tracks was developed. Besides, the efficiency prediction and the linear fitness of the existing conventional lines for a tiling train service were examined on the preceding study which was the development of track system innovation technology for speed-up of them. So, in this paper we propose the more effective maintenance method than the existing it in order to securing the high reliability and safety classified by the infrastructure, in analyzing foreign materials and the maintenance as well as the inspection cycle concerning domestic infrastructures of the track and the catenary etc. on the railway. And we look forward to playing a decisive role as reference material for the effective improvement of the existing maintenance about the infra on the conventional lines for the commercial service of the tilting train.

  • PDF

Confinement Effect Analysis Of Suction Pile In Ground Soil On The Basis Of Natural Frequency Measurement (고유진동수 기반 석션기초의 지반구속효과 분석)

  • Ryu, Moo Sung;Lee, Jun Shin;Lee, Jong Hwa;Seo, Yun Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2022
  • This paper presents the measuring process of dynamic properties of offshore wind power foundation and provides consideration of each step. This Guideline enables to maintain consistent measuring procedure and therefore increase the reliability of test results. Small scaled suction bucket foundation was fabricated to represent the commercial support structure installation mechanism and two cases(free-free, free-fixed) of dynamic tests were performed at workshop. From the tests, the importance of dynamic properties of connection part between suction bucket and tower was figured out. More over, types and configuration of measuring devices are recommended which can help find the natural frequency of wind turbine foundation correctly. In field test, it was found that the natural frequency of suction bucket foundation was increased linearly with the penetration depth due to the confining effect of ambient soil. Meanwhile, it was not easy to get an enough excitation force with normal impact hammer because the N.F of suction bucket model was in the lower range of 0 Hz ~ 5 Hz. Therefore, new excitation method which has enough force and can excite lower frequency range was devised. This study will help develop safety check procedure of suction bucket foundation in field at each installation stage using the N.F measurement.

Post-pillars design for safe exploitation at Trepça hard rock mine (Kosovo) based on numerical modeling

  • Ibishi, Gzim;Genis, Melih;Yavuz, Mahmut
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.463-475
    • /
    • 2022
  • In the mine exploitation stage; one of the critical issues is the stability assessment of post-pillars. The instability of post-pillars leads to serious safety hazards in mining operations. The focus of this study is to assess the stability of post-pillars in the 130# stope in the central ore body at Trepça hard rock mine by employing both conventional (i.e., critical span curve) and numerical methods (i.e., FLAC3D). Moreover, a new numerical based index (i.e., Pillar Yield Ratio-PYR) was proposed. The aim of PYR index is to determine a border line between stable, potentially unstable, and failure state of post-pillars at a specific mine site. The critical value of pillar width to height ratio is 2.5 for deep production stopes (e.g., > 800 m). Results showed that pillar size, mining height and mining depth significantly have affected the post-pillar stability. The reliability of numerical based index (i.e., PYR) is verified based on empirical underground pillar stability graph developed by Lunder, 1994. The proposed pillar yield ratio index and pillar stability graph can be used as a design tool in new mining areas at Trepça hard rock mine and for other situations with similar geotechnical conditions.

Air Certificcation Proposal of Augmented Reality and Virtual Reality Technology (증강현실 및 가상현실 기술의 항공 인증 제안)

  • Choi, Jeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.285-289
    • /
    • 2021
  • This paper identifies the development trend of aviation software certification regulation and introduces the certification regulation optimized for aviation for the application of augmented reality and virtual reality software to aviation maintenance industry. This regulation is expected to provide stability and reliability of augmented reality and virtual reality software applied to aviation maintenance industry by applying strict certification regulations to augmented reality and virtual reality software applied to aviation maintenance industry.We would like to present certification regulations that take into account problems that are difficult to define previously used DO-178B, and DO-178C.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

A spent nuclear fuel source term calculation code BESNA with a new modified predictor-corrector scheme

  • Duy Long Ta ;Ser Gi Hong ;Dae Sik Yook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4722-4730
    • /
    • 2022
  • This paper introduces a new point depletion-based source term calculation code named BESNA (Bateman Equation Solver for Nuclear Applications), which is aimed to estimate nuclide inventories and source terms from spent nuclear fuels. The BESNA code employs a new modified CE/CM (Constant Extrapolation - Constant Midpoint) predictor-corrector scheme in depletion calculations for improving computational efficiency. In this modified CE/CM scheme, the decay components leading to the large norm of the depletion matrix are excluded in the corrector, and hence the corrector calculation involves only the reaction components, which can be efficiently solved with the Talyor Expansion Method (TEM). The numerical test shows that the new scheme substantially reduces computing time without loss of accuracy in comparison with the conventional scheme using CRAM (Chebyshev Rational Approximation Method), especially when the substep calculations are applied. The depletion calculation and source term estimation capability of BESNA are verified and validated through several problems, where results from BESNA are compared with those calculated by other codes as well as measured data. The analysis results show the computational efficiency of the new modified scheme and the reliability of BESNA in both isotopic predictions and source term estimations.

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.