• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.027 seconds

Seismic Behavior Characteristics of Spherical Storage Tanks Supported by Inelastic Members and Performance-Based Seismic Design Based on Reliability (비선형지지구조 저장탱크의 지진거동 특성과 신뢰도 기반의 성능기반 내진설계)

  • Jang jeong min;Sun chang ho;Kim ick hyun;Choi jeong in
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.27-33
    • /
    • 2023
  • In a petrochemical plant, various mechanical equipments and structures are interconnected to ensure operability. Since the production activities of petrochemical plants have a great impact on the national economy, it is very important to maintain not only structural safety but also the operability of the facilities. However, the current seismic design standards present the design requirements of facilities mainly aimed at preventing collapse, and do not provide the requirements for securing operability of facilities. Depending on the behavioral characteristics of the facility, operability of the facility can be secured by seismic performance levels other than the collapse prevention level, so it is necessary to present seismic design methods that can apply various seismic performance levels. Spherical (ball) storage tanks are supported by columns and braces and exhibit complex nonlinear behavior because of buckling and yielding of support members. In this study, nonlinear seismic behavior characteristics were statistically analyzed and a new performance-based seismic design method was proposed based on them.

Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA) (tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.17-24
    • /
    • 2019
  • The combustion properties of the flammable substance used in industrial fields include lower/upper flash point, lower/upper explosion limit, autoignition temperature(AIT), fire point, and minimum oxygen concentration(MOC) etc.. The accurate assessment of these characteristics should be made for process and worker safety. In this study, tert-amylalcohol(TAA), which is widely used as a solvent for epoxy resins, oxidizers of olefins, fuel oils and biomass, was selected. The reason is that there are few researches on the reliability of combustion characteristics compared to other flammable materials. The flash point of the TAA was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the TAA was measured by ASTM 659E. The lower/upper explosion limits of the TAA was estimated using the measured lower/upper flash points by Setaflash tester. The flash point of the TAA by using Setaflash and Pensky-Martens closed-cup testers were experimented at 19 ℃ and 21 ℃, respectively. The flash points of the TAA by Tag and Cleveland open cup testers were experimented at 28 ℃ and 34 ℃, respectively. The AIT of the TAA was experimented at 437 ℃. The LEL and UEL calculated by using lower and upper flash point of Setaflash were calculated at 1.10 vol% and 11.95 vol%, respectively.

An improvement plan for a workplace monitoring system through random selection of workplaces and unnoticed measurement inspection (사업장 무작위 선정 및 불시측정 방식을 통한 작업환경측정제도 신뢰성 제고 방안)

  • Jeong, Jee Yeon;Kang, Tae Sun;Lee, Seung Gill;Park, Hae Dong;Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Objectives: The Ministry of Employment and Labor's enforcement programs, such as workplace monitoring inspection, are one of the major public efforts to protect worker's health. Therefore, a more effective inspection method is required for workplace monitoring, which is helpful for controlling health hazards in the workplace. Methods: For this study, we investigated the related safety and health laws, regulations, and inspection guidelines from the USA, Japan, and Korea. We also analyzed the provisions of industrial safety and health acts, which are related to enhancing the reliability of workplace monitoring. We applied the process of opinion convergence through an experts meeting for our research. Results: We proposed an efficient inspection scheme for workplace monitoring that includes how to select companies(mainly randomized inspections by using a workplace measurement database and workers' compensation insurance database), how to proceed with the inspection process(mainly unannounced visits), and who should carry out this project. Conclusions: We conclude that our proposal for the inspection of workplace monitoring could be a very effective tool for reducing the numbers of companies that do not undertake workplace monitoring and could produce reliable monitoring results.

Scale Development and Validation to Measure Occupational Health Literacy Among Thai Informal Workers

  • Suthakorn, Weeraporn;Songkham, Wanpen;Tantranont, Kunlayanee;Srisuphan, Wichit;Sakarinkhul, Pokin;Dhatsuwan, Jakkapob
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.526-532
    • /
    • 2020
  • Background: The high incidence of work-related diseases and injuries among day-laborers and workers with no legal contracts (informal workers) has received the attention of the Thai authorities. Workers' low occupational health literacy (OHL) has been reasoned as one contributing factor. Absence of a valid tool has prevented assessment of informal workers' OHL. The aim of this study was to create a valid and reliable Occupational Health Literacy Scale within the context of Thai working culture (TOHLS-IF). Methods: This study used the mixed method approach to develop TOHLS-IF. Questions were generated using in-depth interviews and an extensive review of the literature. Experts' assessment confirmed the content validity of TOHLS-IF. The scales of its psychometric properties were assessed in a sample of 400 informal workers using cluster random sampling. Results: The final version of the TOHLS-IF comprises 38 items within 4 dimensions: Ability to Gain Access, Understanding, Evaluation, and Use of occupational health and safety information. Factor analysis identified items explaining 50.22% of the total variance. The final confirmatory analysis confirmed the model estimates were satisfactory for the construct. TOHLS-IF demonstrated a high internal consistency and satisfactory reliability (Cronbach's alpha = .98). Conclusion: The TOHLS-IF is a valid and reliable instrument to assess informal workers' OHL. The structural dimensions of this instrument are based on the concept of health literacy and Thai culture. Thai health professionals are encouraged to benefit from this instrument to assess their workers' OHL and apply findings as guidelines for effective occupational health and safety interventions.

A Study on LRFD Reliability Based Design Criteria of RC Flexural Members (R.C. 휨부재(部材)의 L.R.F.D. 신뢰성(信賴性) 설계기준(設計基準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.21-32
    • /
    • 1981
  • Recent trends in design standards development in some European countries and U.S.A. have encouraged the use of probabilistic limit sate design concepts. Reliability based design criteria such as LSD, LRFD, PBLSD, adopted in those advanced countries have the potentials that they afford for symplifying the design process and placing it on a consistent reliability bases for various construction materials. A reliability based design criteria for RC flexural members are proposed in this study. Lind-Hasofer's invariant second-moment reliability theory is used in the derivation of an algorithmic reliability analysis method as well as an iterative determination of load and resistance factors. In addition, Cornell's Mean First-Order Second Moment Method is employed as a practical tool for the approximate reliability analysis and the derivation of design criteria. Uncertainty measures for flexural resistance and load effects are based on the Ellingwood's approach for the evaluation of uncertainties of loads and resistances. The implied relative safety levels of RC flexural members designed by the strength design provisions of the current standard code were evaluated using the second moment reliability analysis method proposed in this study. And then, resistance and load factors corresponding to the target reliability index(${\beta}=4$) which is considered to be appropriate level of reliability considering our practices are calculated by using the proposed methods. These reliability based factors were compared to those specified by our current ultimate strength design provisions. It was found that the reliability levels of flexural members designed by current code are not appropriate, and the code specified resistance and load factors were considerably different from the reliability based resistance and load factors proposed in this study.

  • PDF

Neuroimaging in Randomized, Multi-Center Clinical Trials of Endovascular Treatment for Acute Ischemic Stroke: A Systematic Review

  • Chong Hyun Suh;Seung Chai Jung;Byungjun Kim;Se Jin Cho;Dong-Cheol Woo;Woo Yong Oh;Jong Gu Lee;Kyung Won Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.42-57
    • /
    • 2020
  • Appropriate use and analysis of neuroimaging techniques is an inevitable aspect of clinical trials for patients with acute ischemic stroke. Neuroimaging examinations were recently used to define the core eligibility criteria and outcomes in acute ischemic stroke research. Recent clinical trials for endovascular treatment in acute ischemic stroke have also demonstrated the efficacy or safety of endovascular treatment using various imaging modalities as well as clinical indices. Furthermore, independent imaging reviews and imaging core laboratory assessments are essential to manage and analyze imaging data in order to enhance the reliability of the outcomes. Therefore, we systematically reviewed the use of neuroimaging in recent randomized clinical trials for endovascular treatment of acute ischemic stroke in order to provide a thorough summary, which would serve as a resource guiding the use of appropriate imaging protocols and analyses in future clinical trials for acute ischemic stroke. This review will help researchers select appropriate imaging biomarkers among the various imaging protocols available and apply the selected type of imaging examination for each study in accordance with the academic purpose.

Research Status and Roles of Natural Analogue Studies in the Radioactive Waste Disposal (방사성폐기물 처분에서 자연유사연구 역할 및 연구 동향)

  • Baik, Min-Hoon;Park, Tae-Jin;Kim, In-Young;Choi, Kyung-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.133-156
    • /
    • 2013
  • Natural analogue studies play an important role in the safety case which requires multiple lines of evidence including the safety assessment for the geological disposal of radioactive wastes. In this study, foreign status of natural analogue studies was investigated by summarizing natural analogue results according to the research topics related with repository materials and radionuclide migration and retardation. Main results, issues, and applicability of the foreign natural analogue studies were also analyzed. The results of domestic natural analogue studies were classified into studies using uranium ore bodies, rocks, groundwaters, and archeological artifacts, respectively, and their main results were summarized. There are massive materials for natural analogue studies which have been carried out during last several decades but they have not been actively applied to the safety assessment and safety case development for the radioactive waster disposal. Thus, in this study, applicable methods of natural analogues were summarized and a methodology for improving their applicability was examined. Natural analogue study is apparently necessary to improve and illustrate the reliability of safety assessment for a radioactive waste repository. Therefore, it is necessary to develop a methodology and construct a natural analogue information database for the application of the results from natural analogue studies to safety case development.

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

Structural Capability Evaluation of the Conventional and Pilot Type Valves for LNG/LNG-FPSO Ships (LNG/LNG-FPSO 선박용 컨벤셔널 및 파일럿 타입 밸브의 구조성능평가)

  • Hwang, Dong Wook;Kim, Sung Jin;Bae, Jun Ho;Jung, Sung Yuen;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1331-1339
    • /
    • 2012
  • Safety valve used in LNG/LNG-FPSO ships is a high value valve, and it plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of pipes in LNG piping system under the cryogenic and high-pressure condition when the pressure of the system connected with the LNG storage tank and pipes reaches over the set pressure. The structural stability is required for the inner pressure and thermal load because of the cryogenic and high-pressure condition, and a reliability of the safety valve is necessary for impact and deformation by opening the valve. But, the safety valve, which plays a key role for a safety of the transport and storage system, is depended on imports for over 90%, and in domestic production, the design of the valve is performed on the basis of experiences of the works without quantitative analysis for the inner operation characteristics and structural stability of the valve. In this study, impact velocity is calculated by theoretical analysis for obtaining the structural stability of the guide according to the impact load by opening the valve. The shape of the guide and the diaphragm for satisfying the structural stability are suggested and verified by using a thermal-structural analysis.

The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature (제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.