• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.03 seconds

Case Study of 1-bromopropane Exposure Assessment During Aircraft Disinfection and Seat Cover Replacement Work (항공기의 소독작업 및 좌석커버 교체작업에서 1-브로모프로판 노출평가 사례)

  • Hae Dong Park;Jiwon Ro;Miyeon Jang;Sungho Kim;Se-Dong Kim;Hyounmin Cho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2024
  • Objectives: To evaluate the levels of exposure to organic compounds during aircraft disinfection and seat cover replacement operations. Methods: According to the working schedule, organic compounds were collected using activated carbon tubes and then analyzed by GC/FID and GC/MSD. Results: In the disinfection task, the main substances listed in the material safety data sheet (MSDS) of the disinfectant were not detected. However, 1-bromopropane, which had been used in the previous task of replacing seat covers, was detected at a level of 2.37 ppm at the measurement time. During seat cover replacement, bonding workers were exposed to 2.48 ppm on an eight-hour time-weighted average, and seat cover replacement workers were exposed to 0.22 ppm. Conclusions: It is necessary to ensure the reliability of MSDS. A work environment management system is necessary when different companies alternate working in the same place.

The Effect of the Fault Tolerant Capability due to Degradation of the Self-diagnostics Function in the Safety Critical System for Nuclear Power Plants (원자력발전소 안전필수시스템 고장허용능력에 대한 자가진단기능 저하 영향 분석)

  • Hur, Seop;Hwang, In-Koo;Lee, Dong-Young;Choi, Heon-Ho;Kim, Yang-Mo;Lee, Sang-Jeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1456-1463
    • /
    • 2010
  • The safety critical systems in nuclear power plants should be designed to have a high level of fault tolerant capability because those systems are used for protection or mitigation of the postulated accidents of nuclear reactor. Due to increasing of the system complexity of the digital based system in nuclear fields, the reliability of the digital based systems without an auto-test or a self-diagnostic feature is generally lower than those of analog system. To overcome this problem, additional redundant architectures in each redundant channel and self-diagnostic features are commonly integrated into the digital safety systems. The self diagnostic function is a key factor for increasing fault tolerant capabilities in the digital based safety system. This paper presents an availability and safety evaluation model to analyze the effect to the system's fault tolerant capabilities depending on self-diagnostic features when the loss or erroneous behaviors of self-diagnostic function are expected to occur. The analysis result of the proposed model on the several modules of a safety platform shows that the improvement effect on unavailability of each module has generally become smaller than the result of usage of conventional models and the unavailability itself has changed significantly depending on the characteristics of failures or errors of self-diagnostic function.

A Study on the Applications of the ACM(Area Capacity Method) for the Carbon-Fiber Composit Cylinder according to the Flaw Depth (복합재 용기의 손상에 따른 ACM기법 적용 연구)

  • Jang, Kap Man;Yim, Sang Sik;Kim, Young Gyu;Kim, Jeong Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2019
  • Although the rupture pressure is evaluated from remaining strength when a flaw is defected to cylinder surface, but the rupture pressure can be not easy to estimate for the composite cylinders. In this study, the area capacity method is developed for the type-3 cylinders that is based on the result applied area capacity method of type-1 cylinders. And the reliability is validated by bursting test with artificial flaw at the cylinder surface. The predicted data of area capacity method and experimental results have very similar tendency. This method and results will be a very important records in field of rupture pressure estimations.

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke;Chen, Weihua;Liang, Manchun;Zhou, Jianqiu;Wang, Yunfu;He, Shuijun;Yang, Jie;Yang, Dandan;Shen, Hongmin;Wang, Xiangwei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2377-2386
    • /
    • 2021
  • To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.

A Study on the Design Safety of Type III High-Pressure Hydrogen Storage Vessel (Type III 고압수소저장용기의 설계 안전성 연구)

  • Park, Woo Rim;Jeon, Sang Koo;Kim, Song Mi;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.7-14
    • /
    • 2019
  • The type III vessel, which is used to store high-pressure hydrogen gas, is made by wrapping the vessel's liner with carbon fiber composite materials for strength performance and lightening. The liner seals the internal gas and the composite resists the internal pressure. The properties of the fiber composite material depends on the angle and thickness of the fiber. Thus, engineers should consider these various design variables. However, it significantly increases the design cost due to the trial and error under designing based on experience or experiments. And, for aluminum liners, fatigue loads due to using and charging could give a huge impact on the performance of the structure. However, fatigue failure does not necessarily occur in the position under the highest load in use. Therefore, for hydrogen storage vessel, fatigue evaluation according to design patterns is essential because stress distribution varies depend on composite layer patterns. This study performed an optimization analysis and evaluated a high-pressure hydrogen storage vessel to minimize these trial and error and improve the reliability of the structure, while simultaneously conducting fatigue assessment of all patterns derived from the optimization analysis process. The results of this study are thought to be useful in the strength improvement and life design of composite reinforced high-pressure storage vessels.

- A Study on Safety in Articles of Food conform to the Product Liability Act Introduction : The Metropolitan Area - (제조물책임(PL)법 도입에 식품부문의 따른 안전성 사례 연구 : 수도권을 중심으로)

  • Kim Yeon Hee;Seo Jang Hoon;Kim Woo Yul;Park Myeong Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.4
    • /
    • pp.61-81
    • /
    • 2004
  • What is the most important in articles of food is hygienic safety. Because food Is the most common thing in our everyday life, however, the importance of its hygienic safety and other many problems caused by food may be easily neglected. What is more, food is can be dangerous as much as it is directly related to human life and accidents from the same cause may have different effects on the victims according to physical and environmental differences of individuals. Thus PL action for food requires more thorough prevention and measure. Korea has been enforcing 'the Product Liability Act' since the 1/sup 1st/ of July 2002. Product Liability (PL) is liability of the manufacturer or the seller of a product to compensate for the death or injury of consumers or the loss of properties caused by the defect of the product. This study surveyed consumers' response to and the effects of the enforcement of the Product Liability Act, investigated how consumers perceived the importance of food safety and the risk of defective food based on PL standards and their experience in damage by food through a questionnaire survey, and analyzed collected data through empirical analyses (reliability analysis, factorial analysis, regression analysis and ANOVA t-test) using SPSS 10.0. Based on the results of analysis, the researcher proposed strategies for coping with the Product Liability Act in the food industry.

The Organization of Interface for safety and reliability of Urban Maglev Third rail System (도시형 자기부상열차 제3궤조 전차선로의 안전성 및 신뢰성 확보를 위한 인터페이스 정립)

  • Min, Byong-Chan;Cho, Sang-Hoon;Heo, Young-Tae;Hong, Du-Young;Kim, Chang-Hwan;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1189-1194
    • /
    • 2011
  • The Maglev train is operated by levitating from a power of a large number of magnets and moving without direct contact to railway track so that reduces noise and vibration due to mechanical friction. Also, the Maglev passes sharp curves and steep hill without any difficulties. The Maglev has a potential to be an alternative transport system urban areas. For successful commercializing of Maglev, the organization of interface for safety and reliability of third rail system are one of the key considerations. Especially, the components of the third rail system, such as power rail, expansion joints, FRP section insulator, and supporter with epoxy insulator, should be durable, convenient for construction, and easy to maintenance. This paper analyzes the characteristics of the third rail system components and proposes organization of interface for system engineering. The operating tests of KIMM for the proposed third rail system verify the safety. Also, this paper analyzes the life cycle of the system components to improve the system reliability and evaluation.

  • PDF

Comparative Study of Korean Workers' Exposure to Dichloromethane by Process Category between Work Environment Monitoring Program and ECETOC TRA (국내 디클로로메탄 제조·사용 사업장 근로자의 공정별 노출수준에 대한 작업환경측정값과 ECETOC TRA 모델값 비교연구)

  • Jeong, Sujin;Bae, Gyewan;Lee, Naroo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.317-330
    • /
    • 2021
  • Objectives: By law, companies in Korea must periodically measure workers' exposure to harmful chemicals (the system is called the Work Environment Monitoring Program (WMP)[a]) and report the results to the government. The government also measures exposure to monitor the WMP's reliability (called Reliability Assessment (RA) for WMP[b]). The issue is that measured data from these two sources are so different that the objectivity of WMP needs to be confirmed by comparing the results using the European Centre for Ecotoxicology and Toxicology of Chemicals' Targeted Risk Assessment (ECETOC TRA). Methods: Step 1: Data collection from WMP reports submitted by companies (n=586) and RA for WMP written by the government (n=33). Step 2: Data Standardization by key information included. Step 3: Data conversion to input-variables required to run the ECETOC TRA model, and run the model with specific data (n=514) which meet the predetermined exposure scenario. Step 4: Statistical data analysis by process category (PROC) and ventilation type from each source ([A] and [B]). Step 5: Additional analysis of any unexpected results. Results: The process categories of the production and handling of Dichloromethane were classified into 12 PROCs, and ten of them were selected to run ECETOC TRA. Modeled values tended to be higher than measured values from both sources. For the measured values from WMP, RCR distribution by PROC was narrow (0.197-0.267, 95% CI) and did not have a relationship with ventilation type, which differs from the tendency of the modeling result. Meanwhile, the measured values from RA for WMP were relatively widely distributed (0.301-1.177, 95% CI) by PROC. In particular PROCs (13,19) were high enough to exceed 1. Also, they become low with better ventilation types and appear differently depending on the ventilation type, similar to the model result. Conclusions: This study revealed that ECETOC TRA might have the potential to serve as a screening tool for exposure assessment and to be used as assistive method for WMP to estimate exposure. Further empirical study is required to confirm its availability as a screening tool.

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.

The Measurement of the Combustible Properties of tert-Butylbenzene for the Improvement of MSDS (Material Safety Data Sheet) (MSDS 개선을 위한 tert-Butylbenzene의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • Because of the vertical combustion characteristics of combustible substances, accurate substance safety information for their safe use, handling and transportation is essential. The flash point, fire point, explosion limits and autoignition temperature (AIT) are important safety parameters which need special attention in chemical plants and laboratories that handle dangerous materials. In this study, tert-butylbenzene which is widely used as an intermediate material in the chemical industry was selected. For the reliability of the flammable properties of tert-butylbenzene, this study was investigated the explosion limits of tert-butylbenzene in the reference data. The flash points, fire points and AITs by the ignition delay time for tert-butylbenzene were experimented. The lower flash points of tert-butylbenzene by using the Setaflash and Pensky-Martens closed-cup testers measured $39^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of tert-butylbenzene by using the Tag and Cleveland open cup testers are measured $51^{\circ}C$ and $54^{\circ}C$. And the fire points of tert-butylbenzene by the Tag and Cleveland open cup testers were $54^{\circ}C$ and $58^{\circ}C$ respectively. The AIT of tert-butylbenzene measured by the ASTM 659E tester was measured as $450^{\circ}C$. The lower explosion limit of $39^{\circ}C$ which measured by the Setaflash flash point tester was calculated to be 0.68 vol%.