• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.035 seconds

A Study on Implementation of RCM for Railway Vehicle (철도차량의 신뢰성기반 유지보수(RCM) 실시 방안)

  • Park, Byoung-Noh;Joo, Hae-Jin;Lee, Chang-Hwan;Lim, Sung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1487-1493
    • /
    • 2008
  • Railway vehicle is very important to implement the effective maintenance in proper to prevent any failure during operation period. Many railway authorities are making efforts to maintain the railway vehicle through scientific and systematic procedure. To achieve this, Reliability Centered Maintenance(RCM) is partially applied. The efficiency of RCM has proven and its terminology was familiar with nuclear power, military and chemical plant etc. since the commercial aircraft's industries has introduced the maintenance program based on the target of reliability. The application of RCM on railway vehicle can be utilized with systematic analysis method to select the best effective maintenance period and action to prevent the failures by selecting the equipment affecting the its safety and reliability. This paper is presented that the procedure of adequate and effective maintenance for railway vehicle by comparing among the related standards in example IEC60300-3,11, MIL-STD-2173, and technical documents or papers. In accordance with above result, RCM procedure is proposed to apply effectively for maintenance of railway vehicle. That is, (1) Analysis of data and Calculation of criticality per equipment (2) Selection of equipment to analyze (3) Analysis of failure mode and effect (4) Evaluation of maintenance method and period (5) Optimization of maintenance program through renewal of maintenance method and period.

  • PDF

An efficient reliability analysis strategy for low failure probability problems

  • Cao, Runan;Sun, Zhili;Wang, Jian;Guo, Fanyi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • For engineering, there are two major challenges in reliability analysis. First, to ensure the accuracy of simulation results, mechanical products are usually defined implicitly by complex numerical models that require time-consuming. Second, the mechanical products are fortunately designed with a large safety margin, which leads to a low failure probability. This paper proposes an efficient and high-precision adaptive active learning algorithm based on the Kriging surrogate model to deal with the problems with low failure probability and time-consuming numerical models. In order to solve the problem with multiple failure regions, the adaptive kernel-density estimation is introduced and improved. Meanwhile, a new criterion for selecting points based on the current Kriging model is proposed to improve the computational efficiency. The criterion for choosing the best sampling points considers not only the probability of misjudging the sign of the response value at a point by the Kriging model but also the distribution information at that point. In order to prevent the distance between the selected training points from too close, the correlation between training points is limited to avoid information redundancy and improve the computation efficiency of the algorithm. Finally, the efficiency and accuracy of the proposed method are verified compared with other algorithms through two academic examples and one engineering application.

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

A Study on Secure Routing Technique using Trust Value and Key in MANET (신뢰도와 키를 이용한 보안 라우팅 기법에 관한 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.69-77
    • /
    • 2015
  • MANET is composed of only the mobile nodes have a limited transmission range. The dynamic topology by the frequent movement of nodes makes routing difficult and is also cause exposed to security vulnerabilities. In this paper, we propose the security routing technique consisted of mechanism of two steps in order to respond effectively to attack by the modification of the routing information and transmit secure data. The hierarchical structure is used and the authentication node that issues the key of the nodes within each cluster is elected in this proposed method. The authentication node manages key issues and issued information for encrypting the routing information from the source node. The reliability value for each node is managed to routing trust table in order to secure data transmission. In the first step, the route discovery is performed using this after the routing information is encrypted using the key issued by the authentication node. In the second step, the average reliability value of the node in the found path is calculated. And the safety of the data transmission is improved after the average reliability value selects the highest path. The improved performance of the proposed method in this paper was confirmed through comparative experiments with CBSR and SEER. It was confirmed a better performance in the transmission delay, the amount of the control packet, and the packet transmission success ratio.

Estimation of Accident Probability for Dynamic Risk Assessment (동적 위험 분석을 위한 사고확률 추정 방법에 관한 연구)

  • Byeong-Cheol Park;Chae-Og Lim;In-Hyuk Nam;Sung-Chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.315-325
    • /
    • 2023
  • Recently, various dynamic risk analysis methods have been suggested for estimating the risk index by predicting the possibility of accidents and damage. It is necessary to maintain and support the safety system for responding to accidents by continuously updating the probability of accidents and the results of accidents, which are quantitative standards of ship risk. In this study, when a LNG leakage that may occur in the LN G Fuel Gas Supply System (FGSS) room during LN G bunkering operation, a reliability physical model was prepared by the change in monitoring data as physical parameters to estimate the accident probability. The scenario in which LNG leakage occur were configured with FT (Fault Tree), and the coefficient of the covariate model and Weibull distribution was estimated based on the monitoring data. The possibility of an LNG leakage, which is the top event of FT, was confirmed by changes in time and monitoring data. A method for estimating the LNG leakage based on the reliability physical analysis is proposed, which supports fast decision-making by identifying the potential LNG leakage at the accident.

A Study on the Risk Assessment of Small Reservoirs using Reliability Analysis Methods (신뢰도 분석기법을 이용한 소규모 저수지의 위험도 분석)

  • Kim, Mun-Mo;Park, Chang-Eon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2000
  • This study is to develop the applied method of reliability analysis to present risk - initial water level relationship in the small reservoir. To determine the reliability, the grasping of uncertainty sources is prerequisited and performance function is formulated. Reliability analysis method is a statistical method and the basic procedure of risk evaluation for overtopping of reservoir is as follows. 1. Define the risk criterion and performance function for the overtopping. 2. Determine the uncertainties of all the variables in the performance function. 3. Perform the risk analysis with suitable risk calculation method. Reliability analysis method such as Monte Carlo simulation(MCS) method and mean value first order second moment(MVFOSM) method are used to calculate the risk for reservoir. Finally, risk - initial water level relationship is established according to return period and it is useful for reservoir operation and safety assessment.ssment.

  • PDF

Development of Real-time Process Management System for improving safety of Shop Floor (생산현장의 안전성 향상을 위한 실시간 공정관리 시스템 개발)

  • Lee, Seung Woo;Nam, So Jeong;Lee, Jai Kyung;Lee, Hwa Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • Workers are avoiding production/manufacturing sites due to the poor working environment and concern over safety. Small and medium-sized businesses introduce new equipment to secure safety in the production site or ensure effective process management by introducing the real-time monitoring technique for existing equipment. The importance of real-time monitoring of equipment and process in the production site can also be found in the ANSI/ISA-195 model. Note, however, that most production sites still use paper-based work slip as a process management technique. Data reliability may deteriorate because information on the present condition of the production site cannot be collected/analyzed properly due to manual data writing by the worker. This paper introduces the monitoring and process management technique based on a direct facility interface to secure safety in the field by improving the poor working environment and enhance there liability and real-time characteristics of the production data. Since the data is collected from equipment in real-time directly through the SIB-based interface and PLC-based interface, problems associated with workers' manual data input are expected to be solved; safety can also be improved by enhancing workers' attention to work by minimizing workers' injuries and disruption.

A THERP Application for Assessing Human Error Rates (THERP의 인간오류평가에 대한 적용연구)

  • Jae, Moo-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.173-177
    • /
    • 2002
  • THERP (Technique for Human Error Rate Prediction) methodology has been widely used for probabilistic safety assessments. The NUREG report involving this methodology is also called the HRA handbook. The THERP assumes that all actions involved in implementing a task are considered as components. In this paper human error rates associated with maintenance are evaluated by the THERP methodology. A gas governor system is used as an example which is also a risky system like nuclear power plants. It is also demonstrated that this approach is flexible in that it can be applied to any operator actions related to test and maintenance.

A Study on the Dependability Processes for Safety Critical Software (안전-필수 소프트웨어를 위한 신뢰도(Dependability) 프로세스에 관한 연구)

  • Kim, Young-Mi;Jeong, Choong-Heui
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.33-37
    • /
    • 2007
  • 최근 디지털 컴퓨터와 정보처리기술의 발전과 더불어 원자력 발전소의 계측제어시스템과 같은 안전-필수 시스템에서도 디지털 기술을 채택하기 시작했다. 안전-필수 시스템에 사용되는 소프트웨어는 높은 신뢰도(dependability)가 요구된다. 소프트웨어의 신뢰도는 신뢰성(reliability), 안전성, 보안 등 다양한 속성들로 설명될 수 있다. 소프트웨어의 신뢰도 향상을 위한 프로세스는 결함예방프로세스, 결함허용프로세스, 결함제거프로세스 그리고 결함예측프로세스가 있으며 이들 프로세스는 소프트웨어 수명주기 초반부터 수행되어야 한다. 본 논문에서는 소프트웨어 신뢰도향상을 위한 신뢰도 프로세스 모델과 개발 단계별로 수행되어야 할 신뢰도 태스크를 제시한다.

  • PDF

A Study on Ensuring Reliability of Hydraulic Pumps for Wheeled Armored Vehicles through Analysis and Testing (차륜형장갑차용 유압펌프의 해석 및 시험을 통한 신뢰성 확보에 관한 연구)

  • Kim, Won-Jae;Lee, Ho-Jun;Choi, Chung-Seok;Seo, Suk-Ho;Choi, Sung-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.78-84
    • /
    • 2020
  • This paper introduces the structural and vibration analysis performed in the localization development process of hydraulic pumps used in wheeled armored vehicles. The maximum strain, maximum stress, maximum displacement, and minimum safety factor were calculated using structural analysis. Furthermore, it was found that the dangerous resonance frequency was avoided through vibration analysis. In addition, the reliability of the analysis results was verified by passing various tests, such as the actual vibration test and the actual durability test. The developed hydraulic pump is expected to contribute significantly to the maintenance of military vehicles in the future.