• Title/Summary/Keyword: relay cooperative

Search Result 306, Processing Time 0.027 seconds

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

A Cooperative Transmission Scheme Based on Alamouti Coding for Cognitive Radio Networks Over Frequency Selective Fading Channels (주파수 선택적 페이딩 채널에서 안치 무선 통신을 위한 Alamouti 코딩 기반 협력 전송 기법)

  • Kang, Seung-Goo;Kim, Jun-Hwan;Baek, Jee-Hyeon;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.403-411
    • /
    • 2011
  • This paper addresses a cooperative transmission scheme based on Alamouti coding for cognitive radio networks over frequency selective fading channels. In the proposed scheme, the Alamouti coded form at the destination node is constructed through a simple combination of symbols at the source node, instead of the time-reversal operation and the conjugate operation at the relay nodes used in the conventional scheme. Numerical results show that the proposed scheme achieves a higher order cooperative diversity than that of the conventional scheme.

Efficient Synchronization Scheme for Cooperative Communication System over Fading Channel (페이딩 환경에서의 효율적인 협력통신 시스템 동기 알고리즘 연구)

  • Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.64-68
    • /
    • 2010
  • In this paper, we studied the novel synchronization algorithm for cooperative communication system over fading. We research mainly on the decode-and-forward scheme. Also, we inserted spreading sequence in origin data frame to control efficiently data synchronization. In mobile station, inserted spreading sequence in data frame passed through the corelation process. We had decide the delay value of received data through result of correlation process. In simulation, We applied that channel gain of three node had different value in various fading environment. Finally we will be possible to control the received data synchronization using result of corelation value in each node between relay to mobile station and base station to mobile station. The results of this paper can be applicable to the cooperative systems.

Tight Lower Bound of Optimal Non-Coherent Detection for FSK Modulated AF Cooperative Communications in Rayleigh Fading Channels

  • Tian, Jian;Zhang, Qi;Yu, Fengqi
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.313-318
    • /
    • 2011
  • When wireless channels undergo fast fading, non-coherent frequency shift keying (FSK) (de)modulation schemes may be considered for amplify-and-forward (AF) cooperative communications. In this paper, we derive the bit-error-rate performance of partial non-coherent receiver as a lower bound of the optimal non-coherent receiver for FSK modulated AF cooperative communications. From the simulation and analytical results, it is found that the derived lower bound is very closed to simulation results. This result shows that knowing partial channel state information may not improve system performance significantly. On the other hand, conventional optimal non-coherent receiver involves complicated integration operation. To address the above complexity issue, we also propose a near optimal non-coherent receiver which does not involve integration operation. Simulation results have shown that the performance gap between the proposed near optimal receiver and the optimal receiver is small.

Cooperative MIMO Channel Simulation Based on the Geometrical Ring Model (기하학적 Ring 모델에 기반을 둔 협력형 MIMO 채널 시뮬레이터)

  • Yang, Mi-Sun;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.235-239
    • /
    • 2008
  • In this paper, we study a simulation model for cooperative MIMO (multiple-input multiple-output) channels and present a cooperative one-ring channel model which is extended from the geometrical one-ring and two-ring scattering models. Assuming that the source, the destination and the relay are surrounded by an infinite number of scatters, we derive a reference model for the cooperative one-ring channel and propose a simulation model based on the reference model provided in the paper. Then we show how modeling parameters of the simulation model are determined to match the correlation functions for the respective models. With numerical investigation, we also show that the correlation functions for the reference and the simulation are well matched.

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

BER Performance of SEP-based Selection Relaying in Cooperative Communications (협력통신에서 SEP 기반의 선택적 릴레이의 BER 성능)

  • Kong, Hyung-Yun;Choi, Dae-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • Selection relaying(SR) is usually based on signal-to-noise ratio(SNR) to decide whether or not to forward recovered symbols. However, instantaneous noise at relay is ignored, leading to the risk of erroneous retransmission induced by the relay that can be detrimental to the eventual detection of symbols at destination. To overcome this problem, we propose using new symbol error probability(SEP) related directly to reliability of received symbols instead of SNR. Simulation results show that the proposed SEP-based SR is considerably better than the conventional SNR-based SR under any relay position and threshold.

Performance Optimization of Two-Way AF Relaying in Asymmetric Fading Channels

  • Qi, Yanyan;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4432-4450
    • /
    • 2014
  • It is widely observed that in practical wireless cooperative communication systems, different links may experience different fading characteristics. In this paper, we investigate into the outage probability and channel capacity of two-way amplify-and-forward (TWAF) relaying systems operating over a mixed asymmetric Rician and Rayleigh fading scenario, with different amplification policies (AP) adopted at the relay, respectively. As TWAF relay network carries concurrent traffics towards two opposite directions, both end-to-end and overall performance metrics were considered. In detail, both uniform exact expressions and simplified asymptotic expressions for the end-to-end outage probability (OP) were presented, based on which the system overall OP was studied under the condition of the two source nodes having non-identical traffic requirements. Furthermore, exact expressions for tight lower bounds as well as high SNR approximations of channel capacity of the considered scenario were presented. For both OP and channel capacity, with different APs, effective power allocation (PA) schemes under different constraints were given to optimize the system performance. Extensive simulations were carried out to verify the analytical results and to demonstrate the impact of channel asymmetry on the system performance.

Physical Layer Security of AF Relay Systems With Jamming.

  • Ofori-Amanfo, Kwadwo Boateng;Lee, Kyoung-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.288-289
    • /
    • 2019
  • This paper studies the secrecy capacity for a wireless cooperative network with perfect channel state information at the relays, and receiver. A similar assumption is also made for the instance where there exist a direct link between the transmitter and receiver. Physical Layer security techniques are employed in wireless networks to mitigate against the activity of eavesdroppers. It offers a viable alternative to computationally intensive encryption. In this paper the design of a protocol utilizing jamming (via jamming nodes) for better security and relaying (via relay nodes) for the amplify-and-forward (AF) operation, is investigated. A a signal-to-noise variant of secrecy known as secrecy gap is explored because of its use of lesser computational power - preferable for practical systems. Thus we maximize this signal-to-noise approach instead of the conventional secrecy capacity maximization method. With this, an iterative algorithm using geometric programming (GP) and semi-definite programming (SDP) is presented with appreciable benefits. The results show here highlight the benefits of using fractional components of the powers of the relays to offer better secrecy capacity.

  • PDF

Performance Analysis of a Two-Hop Fixed-Gain MIMO Multiuser Relay Network with End-to-End Antenna Selection

  • Li, Guangping;Blostein, Steven David;Zhang, Guangchi;Feng, Jiuchao
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.264-267
    • /
    • 2012
  • This letter analyzes the performance of a two-hop MIMO multiuser relay network with a fixed gain amplify-and-forward protocol and antenna selection at the transmitter and receiver. A new expression for the cumulative distribution function of the highest instantaneous end-to-end signal-to-noise ratio is derived. Based on the above result, closed-form expressions for outage probability and bit error rate are presented. Also, the diversity order of the system is determined. Finally, computer simulations are compared to the analytical results, and insights and observations are provided.