• Title/Summary/Keyword: relay cooperative

Search Result 306, Processing Time 0.023 seconds

Performance Analysis of Incremental relaying Method using Multiple Relays in the Cognitive Radio (인지통신에서 다수의 중계기를 이용한 증분형 중계 기법의 성능 분석)

  • Choi, Moon-Geun;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.61-66
    • /
    • 2011
  • Cooperative Communication using relays which include network separated into fixed cooperative relaying and incremental cooperative relaying defending on method receiving signal from a source. If some nodes included network is Primary user ad source and destination, another is Secondary user as relay, The nodes included network excepting source can help PU transmit signal. In the case of all of SU playing a role as relay, destination can get diversity gain, but useless time slot is consumed for transmitting signal. So in this paper, we analysis cooperative relaying which a node succeeding to sense primary signal send signal to destination. We use matlab simulation tool and consider AF, DF, fixed relaying, incremental relaying

Performance of Relay Networks with Partially Differential Modulation Scheme Depending on Energy Allocation in Railway Environments (철도환경에서 에너지 할당에 따른 부분차등변조 방식을 이용한 중계 네트워크의 성능)

  • Cho, Woong;Cho, Han-Byeog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • In relay networks, relay nodes amplify or demodulate/remodulate the received signal from the transmitter, and transmit that signal to the receiver. The received signals from several relays are combined and used for demodulation at the receiver, which enhances the performance of the overall system. Partially differential modulation scheme which uses coherent modulation at the relay and non-coherent modulation scheme at the receiver is adopted for modulation scheme. We analyze the performance of systems depending on various energy allocations of source and relays given the total energy in relay networks.

Secrecy Performances of Multicast Underlay Cognitive Protocols with Partial Relay Selection and without Eavesdropper's Information

  • Duy, Tran Trung;Son, Pham Ngoc
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4623-4643
    • /
    • 2015
  • This paper considers physical-layer security protocols in multicast cognitive radio (CR) networks. In particular, we propose dual-hop cooperative decode-and-forward (DF) and randomize-and-forward (RF) schemes using partial relay selection method to enhance secrecy performance for secondary networks. In the DF protocol, the secondary relay would use same codebook with the secondary source to forward the source's signals to the secondary destination. Hence, the secondary eavesdropper can employ either maximal-ratio combining (MRC) or selection combining (SC) to combine signals received from the source and the selected relay. In RF protocol, different codebooks are used by the source and the relay to forward the source message secretly. For each scheme, we derive exact and asymptotic closed-form expressions of secrecy outage probability (SOP), non-zero secrecy capacity probability (NzSCP) in both independent and identically distributed (i.i.d.) and independent but non-identically distributed (i.n.i.d.) networks. Moreover, we also give a unified formula in an integral form for average secrecy capacity (ASC). Finally, our derivations are then validated by Monte-Carlo simulations.

Effect of Energy Harvesting on Stable Throughput in Cooperative Relay Systems

  • Pappas, Nikolaos;Kountouris, Marios;Jeon, Jeongho;Ephremides, Anthony;Traganitis, Apostolos
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.261-269
    • /
    • 2016
  • In this paper, the impact of energy constraints on a two-hop network with a source, a relay and a destination under random medium access is studied. A collision channel with erasures is considered, and the source and the relay nodes have energy harvesting capabilities and an unlimited battery to store the harvested energy. Additionally, the source and the relay node have external traffic arrivals and the relay forwards a fraction of the source node's traffic to the destination; the cooperation is performed at the network level. An inner and an outer bound of the stability region for a given transmission probability vector are obtained. Then, the closure of the inner and the outer bound is obtained separately and they turn out to be identical. This work is not only a step in connecting information theory and networking, by studying the maximum stable throughput region metric but also it taps the relatively unexplored and important domain of energy harvesting and assesses the effect of that on this important measure.

Cooperative Diversity Based on Interleavers and Its efficient Algorithm in Amplify-And-Forward Relay Networks (Amplify-Forward Relay Network의 인터리버에 근거한 협동 다이버시티와 그 효과적 알고리즘)

  • Yan, Yier;Jo, Gye-Mun;Balakannan, S.P.;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.94-102
    • /
    • 2009
  • In [1], the authors have proposed a novel scheme to achieve full diversity and to combat the time delays from each relay node, but decode-and-forward (DF) model operation mode puts more processing burden on the relay. In this paper, we not only extend their model into amplify and forward (AF) model proposed in [2],[3], but also propose an efficient decoding algorithm, which is able to order the joint channel coefficients of overall channel consisting of source-relay link and relay-destination link and cancels the previous decoded symbols at the next decoding procedure. The simulation results show that this algorithm efficiently improves its performance achieving 2-3dB gain compared to [1] in high SNR region and also useful to DF achieving more than 3dB gain compared to an original algorithm.

Partial Relay Selection in Decode and Forward Cooperative Cognitive Radio Networks over Rayleigh Fading Channels

  • Zhong, Bin;Zhang, Zhongshan;Zhang, Dandan;Long, Keping;Cao, Haiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3967-3983
    • /
    • 2014
  • The performance of an partial relay selection on the decode-and-forward (DF) mode cognitive radio (CR) relay networks is studied, with some important factors, including the outage probability, the bit error ratio (BER), and the average channel capacity being analyzed. Different from the conventional relay selection schemes, the impact of spectrum sensing process as well as the spectrum utilization efficiency of primary users on the performance of DF-based CR relaying networks has been taken into consideration. In particular, the exact closed-form expressions for the figures of merit such as outage probability, BER, and average channel capacity over independent and identically distributed (i.i.d.) Rayleigh fading channels, have been derived in this paper. The validity of the proposed analysis is proven by simulation, which showed that the numerical results are consistent with the theoretical analysis in terms of the outage probability, the BER and the average channel capacity. It is also shown that the full spatial diversity order can always be obtained at the signal-to-noise ratio (SNR) range of [0dB, 15dB] in the presence of multiple potential relays.

Throughput-Reliability Tradeoff in Decode-and-Forward Cooperative Relay Channels: A Network Information Theory Approach

  • Li, Jun;Chen, Wen
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.445-454
    • /
    • 2009
  • Cooperative transmission protocols are always designed to achieve the largest diversity gain and the network capacity simultaneously. The concept of diversity-multiplexing tradeoff (DMT) in multiple input multiple output (MIMO) systems has been extended to this field. However, DMT constrains a better understanding of the asymptotic interplay between transmission rate, outage probability (OP) and signal-to-noise ratio. Another formulation called the throughput-reliability tradeoff (TRT) was then proposed to avoid such a limitation. By this new rule, Azarian and Gamal well elucidated the asymptotic trends exhibited by the OP curves in block-fading MIMO channels. Meanwhile they doubted whether the new rule can be used in more general channels and protocols. In this paper, we will prove that it does hold true in decode-and-forward cooperative protocols. We deduce the theoretic OP curves predicted by TRT and demonstrate by simulations that the OP curves will asymptotically overlap with the theoretic curves predicted by TRT.

Wireless Ad-hoc Networks Using Cooperative Diversity-based Routing in Fading Channel

  • Kim, Nam-Soo;An, Beong-Ku;Kim, Do-Hyeon;Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2B
    • /
    • pp.69-75
    • /
    • 2008
  • We propose new routing scheme, Cooperative Diversity-based Routing (CDR)which utilize the cooperative space diversity for power saving and for performance enhancement of wireless ad-hoc networks. The end-to-end performance of the proposed routing, CDR, is analyzed based on the Haenggi's link model. The improved performance is compared with Multi-hop Relay Routing (MRR) by analytical methods. When the required outage probability is $1{\times}10^{-3}$ at the destination node in ad-hoc networks with 7 nodes, we noticed that each node can save power consumption by 21.5 dB in average, by using our proposed CDR compared to MRR.

Optimizations of Multi-hop Cooperative Molecular Communication in Cylindrical Anomalous-Diffusive Channel

  • Xuancheng Jin;Zhen Cheng;Zhian Ye;Weihua Gong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1075-1089
    • /
    • 2024
  • In this paper, the optimizations of multi-hop cooperative molecular communication (CMC) system in cylindrical anomalous-diffusive channel in three-dimensional enviroment are investigated. First, we derive the performance of bit error probability (BEP) of CMC system under decode-and-forward relay strategy. Then for achieving minimum average BEP, the optimization variables are detection thresholds at cooperative nodes and destination node, and the corresponding optimization problem is formulated. Furthermore, we use conjugate gradient (CG) algorithm to solve this optimization problem to search optimal detection thresholds. The numerical results show the optimal detection thresholds can be obtained by CG algorithm, which has good convergence behaviors with fewer iterations to achieve minimized average BEP compared with gradient decent algorithm and Bisection method which are used in molecular communication.

Space-Time Diversity Relaying Strategy using Cooperative Communication Technique (협력 통신 기법을 이용한 시공간 다이버시티 중계 전략)

  • Kim, Eun-Ki;Park, Noe-Yoon;Lee, Kwan-Seob;Kim, Young-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.65-71
    • /
    • 2009
  • In this paper a new space-time diversity relaying strategy using cooperative communication technique is proposed. More than one relaying terminals are included in one cooperative group to share their state information, such as frame error rate and channel state information. The best terminals are selected to send bit information using space-time diversity relay system. An implementation for the proposed scheme is also presented using the TDMA cooperative protocol. The resulting receive signal to transmit signal ratio and computer simulation demonstrate that the proposed strategy outperforms the conventional cooperative system.