• 제목/요약/키워드: relay cooperative

Search Result 306, Processing Time 0.045 seconds

Coalition Formation Game Based Relay Selection and Frequency Sharing for Cooperative Relay Assisted Wireless D2D Networks with QoS Constraints

  • Niu, Jinxin;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5253-5270
    • /
    • 2016
  • With device-to-device (D2D) communications, an inactive user terminal can be utilized as a relay node to support multi-hop communication so that connective experience of the cell-edge user as well as the capacity of the whole system can be significantly improved. In this paper, we investigate the spectrum sharing for a cooperative relay assisted D2D communication underlying a cellular network. We formulate a joint relay selection and channel assignment problem to maximize the throughput of the system while guaranteeing the quality of service (QoS) requirements of cellular users (CUs) and D2D users (DUs). By exploiting coalition formation game theory, we propose two algorithms to solve the problem. The first algorithm is designed based on merge and split rules while the second one is developed based on single user's movement. Both of them are proved to be stable and convergent. Simulation results are presented to show the effectiveness of the proposed algorithms.

A Relay Selection Scheme with Q-Learning (Q-Learning을 이용한 릴레이 선택 기법)

  • Jung, Hong-Kyu;Kim, Kwang-Yul;Shin, Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.39-47
    • /
    • 2012
  • As a scheme to efficiently reduce the effects of multipath fading in next generation wireless communication systems, cooperative communication systems have recently come into the spotlight. Since these cooperative communication systems use cooperative relays with diverse fading coefficients to transmit information, having all relays participate in cooperative communication may result in unnecessary waste of resources, and thus relay selection schemes are required to efficiently use wireless resources. In this paper, we propose an efficient relay selection scheme through self-learning in cooperative wireless networks using Q-learning algorithm. In this scheme, we define states, actions and two rewards to achieve good SER (Symbol Error Rate) performance, while selecting a small number of cooperative relays. When these parameters are well-defined, we can obtain good performance. For demonstrating the superiority of the proposed Q-learning, We compared the proposed scheme with Q-learning and a relay selection scheme with a mathematical analysis. The simulation results show that, compared to a scheme that obtains optimum relays through a mathematical analysis, the proposed scheme uses resources efficiently by using smaller numbers of relays with comparable SER performance. According to these simulation results, the proposed scheme can be considered as a good attempt for future wireless communication.

Design of Cooperative Communication Protocol for UWB-based Distributed MAC Systems (UWB 기반 Distributed MAC 시스템을 위한 협력 통신 프로토콜 설계)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.460-469
    • /
    • 2012
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, we propose a novel cooperative communication protocol adaptive to current UWB link transmission rate. The proposed cooperative communication protocol has compatibility with current WiMedia D-MAC and Wireless USB standard and is executed at each device according to a Relay Node Selection (RNS) criterion.

Outage Analysis of Cooperative Transmission in Two-Dimensional Random Networks over Rayleigh Fading Channels

  • Tran, Trung Duy;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.262-268
    • /
    • 2011
  • In this paper, we evaluate the outage performance of cooperative transmission in two-dimensional random networks. Firstly, we derive the joint distributions of the source-relay and the relay-destination links. Secondly, the outage probability for the decode-and-forward relaying system is derived when selection combining (SC) is employed at the destination. Finally, we calculate the average outage probability of the system and then attempt to express it by a simple approximate expression. The simulation results are presented to verify the accuracy of the derivations. Similar to deterministic networks, the cooperative transmission in random networks outperforms direct transmission at a high signal-to-noise ratio (SNR).

Performance Analysis of Amplify and Forward (AF)-based Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Khan, Muhammad Sajjad;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • Cognitive radio has been recently considered a promising technology to improve spectrum utilization by enabling secondary access to licensed bands that are not used by primary users temporarily or spatially. A prerequisite to this secondary access is the lack of interference to the primary system. This requirement makes spectrum sensing a key process for cognitive radio. In this study, we consider amplify and forward (AF)-based cooperative spectrum sensing for cognitive radio networks where multiple relay nodes are utilized to amplify and forward the primary user signal for better spectrum sensing, and maximum ratio combining is used for fusion detection by a cognitive coordinator. Further, the detection probability and the bit error rate of AF-based cooperative spectrum sensing are analyzed in fading multiple cognitive relay channels. The simulation results show that the AF-based cooperative spectrum sensing scheme outperforms the conventional scheme.

Cooperative MAC Protocol Using Active Relays for Multi-Rate WLANs

  • Oh, Chang-Yeong;Lee, Tae-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.463-471
    • /
    • 2011
  • Cooperative communications using relays in wireless networks have similar effects of multiple-input and multiple-output without the need of multiple antennas at each node. To implement cooperation into a system, efficient protocols are desired. In IEEE 802.11 families such as a/b/g, mobile stations can automatically adjust transmission rates according to channel conditions. However throughput performance degradation is observed by low-rate stations in multi-rate circumstances resulting in so-called performance anomaly. In this paper, we propose active relay-based cooperative medium access control (AR-CMAC) protocol, in which active relays desiring to transmit their own data for cooperation participate in relaying, and it is designed to increase throughput as a solution to performance anomaly. We have analyzed the performance of the simplified AR-CMAC using an embedded Markov chain model to demonstrate the gain of AR-CMAC and to verify it with our simulations. Simulations in an infrastructure network with an IEEE 802.11b/g access point show noticeable improvement than the legacy schemes.

A Novel Alamouti Transmission Scheme for OFDM Based Asynchronous Cooperative Systems with Low Relay Complexity (비동기 협력 통신 시스템에서 낮은 릴레이 복잡도를 갖는 새로운 Alamouti 전송 기법)

  • Kang, Seung-Goo;Lee, Young-Po;Song, Iick-Ho;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.105-111
    • /
    • 2011
  • In this paper, we propose a novel Alamouti space-time transmission scheme for orthogonal frequency division multiplexing (OFDM) based asynchronous cooperative communication systems with low relay complexity. The conventional scheme requires an additional operation likes time-reversal at the relay nodes besides the simple multiplications at the relay nodes, which result in increasing the complexity of relay nodes. Unlike the conventional scheme, exploiting the simple combination of the symbols at the source node and the simple multiplications at the relay nodes, the proposed scheme achieves the second order diversity gain by obtaining the Alamouti code structure at the destination node. Simulation results show that the proposed scheme achieves the second order diversity gain and has the same bit error rate performance as the conventional scheme.

Power-aware Relay Selection Algorithm for Cooperative Diversity in the Energy-constrained Wireless Sensor Networks (전력 제한된 무선 센서네트워크에서 협력 다이버시티를 위한 전력인지 릴레이 선택 알고리즘)

  • Xiang, Gao;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.752-759
    • /
    • 2009
  • Cooperative diversity is an effective technique to combat multi-path fading. When this technique is applied to energy-constrained wireless sensor networks, it is a key issue to design appropriate relay selection and power allocation strategies. In this paper, we proposed a new multi-relay selection and power allocation algorithm to maximize network lifetime. The algorithm are composed of two relay selection stages, where the channel condition and residual power of each node were considered in multi-relay selection and the power is fairly allocated proportional to the residual power, satisfies the required SNR at destination and minimizes the total transmit power. In this paper, proposed algorithm is based on AF (amplify and forward) model. We evaluated the proposed algorithm by using extensive simulation and simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

Relay Cooperative Transmission Scheme for Distributed MAC Protocol-Based Logistic Applications (분산적인 매체접근제어(MAC) 프로토콜 기반 물류 시스템을 위한 릴레이 협력통신 방안)

  • Joo, Yang-Ick;Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.423-432
    • /
    • 2011
  • In a warehouse, because there exist frequent changes of stock status and the quality of some contents are influenced by the environment such as temperature, fast and accurate management of the warehouse's environment is very important for Warehouse Management Systems (WMS). However, due to the absence of a unified standard for the communication protocol between RFID nodes, the connection between RFID nodes can be broken in case of movement of a RFID reader to a region with a different protocol. Moreover, centralized MAC schemes for RFID communications in previous studies have severe problems. For an example, if a cluster header disappears from the cluster due to the cluster header's movement or bad channel conditions, the RFID member nodes of the cluster waste lots of time and energy to re-elect a new cluster header. Therefore, in this paper, we propose a WiMedia Distributed MAC (D-MAC) scheme for RFID communications and its cooperative relay transmission scheme for WMS applications Simulation results show performance improvement at the RFID node by using the proposed cooperative relay transmission scheme.

Smart Grid Cooperative Communication with Smart Relay

  • Ahmed, Mohammad Helal Uddin;Alam, Md. Golam Rabiul;Kamal, Rossi;Hong, Choong Seon;Lee, Sungwon
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.640-652
    • /
    • 2012
  • Many studies have investigated the smart grid architecture and communication models in the past few years. However, the communication model and architecture for a smart grid still remain unclear. Today's electric power distribution is very complex and maladapted because of the lack of efficient and cost-effective energy generation, distribution, and consumption management systems. A wireless smart grid communication system can play an important role in achieving these goals. In this paper, we describe a smart grid communication architecture in which we merge customers and distributors into a single domain. In the proposed architecture, all the home area networks, neighborhood area networks, and local electrical equipment form a local wireless mesh network (LWMN). Each device or meter can act as a source, router, or relay. The data generated in any node (device/meter) reaches the data collector via other nodes. The data collector transmits this data via the access point of a wide area network (WAN). Finally, data is transferred to the service provider or to the control center of the smart grid. We propose a wireless cooperative communication model for the LWMN.We deploy a limited number of smart relays to improve the performance of the network. A novel relay selection mechanism is also proposed to reduce the relay selection overhead. Simulation results show that our cooperative smart grid (coopSG) communication model improves the end-to-end packet delivery latency, throughput, and energy efficiency over both the Wang et al. and Niyato et al. models.