• Title/Summary/Keyword: relaxation amplitude

Search Result 80, Processing Time 0.027 seconds

The Effects of Breath-Counting Meditation and Deep Breathing on Heart Rate Variability

  • Kim, Ji-Hwan;Bae, Hyo-Sang;Park, Seong-Sik
    • The Journal of Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.36-44
    • /
    • 2016
  • Objectives: This study aimed to evaluate the effects of breath-counting meditation (BCM) and deep breathing (DB) on heart rate variability (HRV). These breathing techniques have the characteristics of non-paced and self-controlled breathings, resulting in less increase of HRV. We also compared BCM and DB with usual breathing (UB) or relaxing breathing (RB) which can reveal the characteristics of those. Methods: 83 healthy volunteers sitting in chairs performed non-paced breathing; UB, RB, BCM, and DB each for 5 minutes. One minute of relaxation was permitted between breathings. Participants surfed the internet sitting in front of a computer during UB, while for RB, they remained steady with eyes closed. For BCM, they breathed inwardly counting from 1 to 10 repetitively, while they took a deep breath during DB. Physiological indices were simultaneously recorded with a biofeedback system. Results: Respiration rate, thoracic amplitude, and mean heart rate decreased in RB compared with UB, but there was no change in HRV. Respiration rate in BCM and DB was lower than that in UB or RB, and the amplitude of thorax or abdomen, and HRV all increased (p<0.05). However, mean heart rate and skin conductance decreased in BCM compared with UB (p<0.05), whereas those were no different between DB and UB. Conclusion: BCM, just concentrating mentally on breathing with counting each breath, can increase HRV with less sympathetic activation, while DB, actively moving thorax and abdomen for achieving the deepest respiration rate, can greatly raise HRV with the maintenance of mean vagal or sympathetic tone.

1H Nuclear Magnetic Resonance of a Ferroelectric Liquid Crystalline System

  • Cha, J.K.;Lee, K.W.;Oh, I.H.;Han, J.H.;Lee, Cheol-Eui;Jin, J.I.;Choi, J.Y.
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.61-63
    • /
    • 2010
  • We used $^1H$ nuclear magnetic resonance (NMR) to study the phase transitions and molecular dynamics in a characteristic ferroelectric liquid crystal with a carbon number n = 7, S-2-methylbutyl 4-n-heptyloxybiphenyl-4'-carboxylate (C7). The results were compared with those of our recent work on S-2-methylbutyl 4-n-octanoyloxybiphenyl-4'-carboxylate (C8), with a carbon number n = 8. While the recrystallization and isotropic phase transitions exhibited a first-order nature in the $^1H$ NMR spin-lattice and spin-spin relaxation measurements, a second-order nature was shown at the Sm-A - Sm-$C^*$ liquid crystalline phase transition. A soft-mode anomaly arising from the tilt angle amplitude fluctuation of the director, of which only a hint had been noticed in the C8 system, was manifested in the C7 system at this transition.

Dynamics of the mobile insert helix in the domain III-IV of Aux/IAA17 probed by site-directed spin labeling and paramagnetic NMR spectroscopy

  • Han, Mookyoung;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.61-66
    • /
    • 2015
  • The plant hormone auxin is involved in all stages of plant development. Aux/IAAs are the transcriptional repressors that bind to the Auxin Response Factors (ARFs) to regulate the gene expression upon auxin release. Aux/IAA have highly conserved C-terminal domains (domains III-IV) that mediate both homotypic and heterotypic interactions between Aux/IAA and ARF family proteins. Recent studies revealed that the conserved domains III-IV share a common ${\beta}$-grasp fold that oligomerizes in a front-to-back manner. In particular, Aux/IAA contains a mobile insert helix in the domain III-IV, whereas ARFs do not. Here, we investigated the dynamics of the insert helix using paramagnetic NMR spectroscopy. The insert helix exhibited fast motions in the ps-ns time scale from $^{15}N$ relaxation data, but the amplitude of the motion is likely limited to the local neighborhood. Our result suggests that the motion of the helix may have functional implications in protein-protein interactions for transcriptional regulations.

Correlation Between Fatigue Life of 2.2Ni-0.1Cr-0.5Mo Steel Accompanying Mean Stresses with Cyclic Strain Energy Density (평균응력을 동반하는 2.2Ni-lCr-0.5Mo강의 피로수명과 변형률에너지 밀도와의 상관관계)

  • Koh, Seung-Kee;Ha, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.167-174
    • /
    • 2003
  • Fatigue damage of 2.2Ni-1Cr-0.5Mo steel used fir high strength pressure tubes and vessels was evaluated using uniaxial specimens subjected to strain-controlled fatigue loading. Based on the fatigue test results from different strain ratios of -2. -i 0, 0.5, 0.75, the fatigue damage of the steel was represented by using a cyclic strain energy density. Mean stress relaxation depended on the magnitude of the applied strain amplitude. The high pressure vessel steel exhibited the cyclic softening behavior. Total strain energy density consisting of the plastic strain energy density and the elastic tensile strain energy density described fairly well the fatigue life of the steel, taking the mean stress effects into account. Compared to other fatigue damage parameters, fatigue life prediction by the cyclic strain energy density showed a good correlation with the experimental fatigue lift within a factor of 3.

Analysis and Design of a Pneumatic Vibration Isolation System: Part I. Modeling and Algorithm for Transmissibility Calculation (공압 제진 시스템의 해석과 설계: I. 모델링과 전달율 계산 알고리즘)

  • Moon Jun Hee;Pahk Heui Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.127-136
    • /
    • 2004
  • This paper is the first of two companion papers concerning the analysis and design of a pneumatic vibration isolation system. The design optimization of the pneumatic vibration isolation system is required for the reduction of cost, endeavor and time, and it needs modeling and calculation algorithm. The nonlinear models are devised from the fluid mechanical expression for components of the system and the calculation algorithm is derived from the mathematical relationship between the models. It is shown that the orifice makes the nonlinear property of the transmissibility curve that the resonant frequency changes by the amplitude of excited vibration. Linearization of the nonlinear models is tried to reduce elapsed time and truncation error accumulation and to enable the transmissibility calculation of the system with multi damping chambers. The equivalent mechanical models generated by linearization clarify the function of each component of the system and lead to the linearized transfer function that can give forth to the transmissibility exactly close to that of nonlinear models. The modified successive under-relaxation method is developed to calculate the linearized transfer function.

High Temperature Creep-Fatigue Behavior of 25Cr-13Ni Stainless Steel (25Cr-13Ni 스테인리스강의 고온 크리프-피로거동에 관한 연구)

  • Song, Jeon-Young;Ahn, Yong-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • The low cycle fatigue (LCF) and creep-fatigue (hold time tension fatigue, HTTF) tests were performed on the modified 25Cr-13Ni cast stainless steel, which was selected as a candidate material for exhaust manifold in automotive engine. The exhaust manifold is subjected to an environment in which heating and cooling cycle occur due to the running pattern of automotive engine. Several types of fatigue behaviour such as thermal fatigue, thermal mechanical fatigue and creep-fatigue are belong to the main failure mechanisms. High temperature tensile test was firstly carried out to compare the sample with the traditional cast steel for the component. The low cycle fatigue and HTTF tests were carried out under the strain controlled condition with the total strain amplitude from ${\pm}0.6%$ to ${\pm}0.7%$ at $800^{\circ}C$. The hysteresis loops of HTTF tests showed significant stress relaxation during tension hold time. With the increase of tension hold time, the fatigue life was remarkably deceased which caused from the formation of intercrystalline crack by the creep failure mechanism.

Structural Safety Analysis on Bicycle Suspension Seat Post (자전거 서스펜션 안장봉에 대한 구조 안정성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.72-81
    • /
    • 2012
  • This study investigates structural, fatigue and modal analyses at bicycle suspension seat post. When weight is applied to the saddle, models 1 and 2 have the weakest strength at the part connected with saddle. And model 2 is greater total deformation and equivalent stress than model 1. Among the cases of nonuniform fatigue loads at models 1 and 2, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^4MPa$ and the amplitude stress of 0 to $10^4MPa$, the possibility of maximum damage becomes 4%. This stress state can be shown with 5 to 7times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Model 1 has better impulse relaxation and passenger sensitivity than model 2. The structural result of this study can be effectively utilized with the design of bicycle suspension seat post by investigating prevention and durability against its damage.

Modeling the tidal connection between in and around galaxy clusters

  • Song, Hyun-Mi;Lee, Joung-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • We analyze the halo and galaxy catalogs from the Millennium simulations at redshifts z=0, 0.5, 1 to determine the alignment profiles of cluster galaxies in terms of the matter density correlation coefficient and discuss a cosmological implication our result has for breaking parameter degeneracies. For each selected cluster, we measure the alignment between the major axes of the pseudo inertia tensors from all satellites within cluster's virial radius and from only those satellites within some smaller radius. Then we average the measured values over the similar-mass sample to determine the cluster galaxy alignment profile as a function of top-hat scale difference at each redshift. It is shown that the alignment profile of cluster galaxies is well approximated by a power-law of the nonlinear density correlation coefficient that is independent of the power spectrum normalization and bias factor. The alignment profile of cluster galaxies is found to have higher amplitude and lower power-law index when averaged over the larger-mass sample and to have rather weak redshift-dependence. This result is consistent with the picture that the satellite galaxies retain the memory of the external tidal fields right after merging and infalling into the clusters but they gradually lose the initial alignment tendency as the cluster's relaxation proceeds. Demonstrating that the nonlinear density correlation coefficient varies sensitively with the density parameter and neutrino mass fraction, we discuss a potential power of the cluster galaxy alignment profile as an independent probe of cosmology.

  • PDF

A Study on Locational Control of Motion Ghost in Magnetic Imaging System (자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究))

  • Lee, Who-Min
    • Journal of radiological science and technology
    • /
    • v.16 no.2
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.