• 제목/요약/키워드: relativistic electron event

검색결과 9건 처리시간 0.021초

RELATIONSHIP BETWEEN GEOMAGNETIC STORMS AND RELATIVISTIC ELECTRON EVENTS

  • Kim, Hee-Jeong;Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권2호
    • /
    • pp.95-100
    • /
    • 2003
  • This paper is for the investigation of the relationship between the geomagnetic disturbances and the relativistic electron events occurring at geosynchronous orbit. We have analyzed the electron fluxes of E > 2 MeV measured by GOES 10 satellite and the hourly Dst index for the period of April, 1999 to December, 2002. With the rigorous definition of the relativistic event, total 34 events were identified during the time period. Our statistical study showed that more than 50% of the total events occurred associated with weak (or sometimes virtually no) magnetic storms. And only ~ 20% of the events took place accompanied by a strong magnetic storm of $Dst_{min}$ < -100 nT. This result suggests that large geomagnetic storms may not be crucial for the occurrence of a relativistic event at geosynchronous orbit. We also found that there is no clear correlation between the maximum electron flux of an event and the associated minimum of Dst. Therefore any study on the physical mechanism (s) accounting for the relativistic events should take it into account that strong magnetic storms may not be necessarily required for the occurrence of a relativistic electron event at geosynchronous orbit.

CHARACTERISTIC SOLAR WIND DYNAMICS ASSOCIATED WITH GEOSYNCHRONOUS RELATIVISTIC ELECTRON EVENTS

  • Kim, Hee-Jeong;Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권2호
    • /
    • pp.93-100
    • /
    • 2004
  • We have investigated characteristic solar wind dynamics associated with relativistic electron events at geosynchronous orbit. Most of the events for April, 1999 through December, 2002 are found to be accompanied by a prolonged solar quiet period which is characterized as low solar wind density, weak interplanetary magnetic field (IMF), and fast alfvenic fluctuations in IMF $B_z$. In a typical relativistic event, electron fluxes begin to increase by orders of magnitude when solar wind parameters drop to low values (e.g., $n_{sw}∼5 cm^{-3}$ and |$B_{IMF}$∼5 nT) after sharp peaks. Then the elevated electron fluxes stay at the high level during the solar quiet period. This observation may suggest the following scenario for the occurrence of a geosynchronous relativistic event: (ⅰ) Quiet solar winds can yield a stable and more dipole-like magnetospheric configurations in which the geosynchronous orbit locates well inside the trapping boundary of the energetic electrons. (ⅱ) If a large population of MeV electrons are generated (by whatever acceleration process(es)) in the inner magnetosphere, they can be trapped and effectively accumulated to a high intensity. (ⅲ) The high electron flux can persist for a number of days in the geosynchronous region as long as the solar wind dynamics stays quiet. Therefore the scenario indicates that the occurrence of a relativistic event would be a result of a delicate balance between the effects of electron acceleration and loss. In addition, the sensitive dependence of a relativistic event on the solar wind conditions makes the prediction of solar wind variability as important as understanding of electron acceleration processes in the forecast of a relativistic event.

A CASE STUDY TO DETERMINE THE RELATIONSHIP OF RELATIVISTIC ELECTRON EVENTS TO SUBSTORM INJECTIONS AND ULF POWERS

  • Hwang Junga;Min Kyoung Wook;Lee Ensang;Lee China;Lee Dae Young
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.380-383
    • /
    • 2004
  • We study the two storm events of 1997: one in May that was accompanied by a relativistic electron event (REE) and the other in September, with a more profound Dst decrease, but with no significant flux increase of relativistic electrons. We find that a larger amount of seed electrons was present in the May event compared to that of the September storm, whereas the ULF (ultra low frequency) power was more enhanced and the particle spectrum was harder in the September event. Hence, we demonstrate that a larger storm does not necessarily produce more seed electrons and that the amount of seed electrons is an important factor in an actual increase in REE flux levels, while ULF can harden the particle spectra without causing an apparent REE.

  • PDF

2006년 발생한 고속 태양풍과 관련된 정지궤도에서의 상대론적 전자 증가 이벤트 (Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006)

  • 이성은;황정아;이재진;조경석;김관혁;이유
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권4호
    • /
    • pp.439-450
    • /
    • 2009
  • 2006년 상반기동안 GOES 10에 의해 관측된 > 2MeV의 전자에너지 채널에서 반복되는 상대론적 전자 증가 이벤트(GREE, Geosynchronous Relativistic Electron Event)가 4회 있었다. 이 현상들은 모두 코로나 구멍(Coronal hole)에서부터 나온 고속 태양풍(HSS, High Speed Solar Wind Stream)과 관련된 것으로 여겨진다. 약 27일 주기를 갖는 이 4회의 전자 증가 현상은 플럭스가 점점 증가하는 형태를 보인다. 현재까지 알려진 상대론적 전자 증가 현상의 주요 원인으로는 다음의 요소들이 언급되어 왔다: (1) 코로나 구멍과 관련된 태양풍 속도, (2) Pc5 ULF 파동, (3) 행성간 자기장(IMF, Interplanetary Magnetic Field) Bz의 남쪽 성 분, (4) 자기 부폭풍(substorm)의 발생, (5) 증가된 휘슬러 모드 코러스 파동(whistler mode chorus wave)과 (6)동압력(dynamic pressure). 따라서 이 논문에서는 2006년 상반기 동안 앞에서 언급한 6가지 현상 들을 분석하여 어느 요소가 상대론적 전자 증가 현상의 플럭스와 가장 가까운 연관성이 있는지 알아보고자 한다.

Can relativistic electrons be accelerated in the geomagnetic tail region?

  • Lee, J.J.;Parks, G.K.;Min, K.W.;Lee, E.S.;McCarthy, M.P.;Hwang, J.A.;Lee, C.N.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.31.1-31.1
    • /
    • 2008
  • While some observations in the geomagnetic tail region supported electrons could be accelerated by reconnection processes, we still need more observation data to confirm electron acceleration in this region. Because most acceleration processes accompany strong pitch angle diffusion, if the electrons were accelerated in this region, strong energetic electron precipitation should be observed near earth on aurora oval. Even though there are several low altitude satellites observing electron precipitation, intense and small scale precipitation events have not been identified successfully. In this presentation, we will show an observation of strong energetic electron precipitation that might be analyzed by relativistic electron acceleration in the confined region. This event was observed by low altitude Korean STSAT-1, where intense several hundred keV electron precipitation was seen simultaneously with 10 keV electrons during storm time. In addition, we observed large magnetic field fluctuations and an ionospheric plasma depletion with FUV aurora emissions. Our observation implies relativistic electrons can be generated in the small area where Fermi acceleration might work.

  • PDF

Space Weather and Relativistic Electron Enhancement

  • Lee, J.J.;Parks, G.K.;McCarthy, M.P.;Min, K.W.;Lee, E.S.;Kim, H.J.;Park, J.H.;Hwang, J.A.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2006년도 한국우주과학회보 제15권2호
    • /
    • pp.52-52
    • /
    • 2006
  • Many spacecraft failures and anomalies have been attributed to energetic electrons in the Earth's magnetosphere. While the dynamics of these electrons have been studied extensively for several decades, the fundamental question of how they are accelerated is not fully resolved. Proposed theories have not been successful in explaining fast high energy increase such as REE (Relativistic electron enhancement). In this presentation, we show observations of energetic electron precipitation measured by the Korean satellite, STSAT-1 which simultaneously detect (100ev - 20 keV) and (170 - 360 keV) energy electrons at the 680 km orbit, when the RES event observed at the geosynchronous orbit on October 13, 2004. STSAT-1 observed intense electron precipitation in both energy ranges occurred in the midnight sector clearly demonstrating that electrons having wide energy band are injected from the plasma sheet. To make the balance between loss and injection, the injected electron flux should be also large. In this situation, the injected electrons can be trapped into the magnetosphere and produce REE, though they have low e-folding energies. We propose this plasma sheet injection might be the primary source of relativistic electron (1 MeV) flux increases.

  • PDF

자기 폭풍 시 나타난 상대론적 전자 플럭스 변화와 ULF와 whistler 크기의 변화 사이의 상관관계 관찰

  • 이지나;황정아;이은상;민경욱;이대영
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.83-83
    • /
    • 2003
  • 자기 폭풍 발생시에 지구 자기권 내에서 MeV 에너지대의 전자 플럭스가 증가하는 현상이 나타남이 관측되었다. 이러한 Relativistic Electron Events (REE) 가속 기작의 주요 후보로 Ultra-Low Frequency(ULF)와 whistler 파동의 역할이 제시되어왔다. 본 연구에서는 1997부터 1999년에 발생한 대표적인 자기 폭풍들을 선택하여, 상대론적 전자 플럭스가 증가한 경우, 감소한 경우 그리고 변화가 크게 나타나지 않는 경우의 세 가지로 분류하여 보았다. 각각의 event들에 대해 CANOPUS 지상자기장 관측소에서 얻은 지자기 값을 이용하여 위 각각의 세 경우에 대해 ULF 파동의 크기 변화를 비교해 보았다. 그리고 똑같은 자기 폭풍 현상에서 POLAR 위성의 관측 값을 이용하여 whistler 영역의 파동 강도를 살펴보았다. 또한 자기 폭풍과 REE, 그리고 ULF의 변화가 L-shell값과 어떤 관련이 있는지도 알아본다.

  • PDF

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.