• Title/Summary/Keyword: relative pose estimation

Search Result 22, Processing Time 0.02 seconds

Fast Structure Recovery and Integration using Improved Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 빠른 구조 복원 및 융합)

  • Park, Jong-Seung;Yoon, Jong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.303-315
    • /
    • 2007
  • This paper proposes a 3D structure recovery and registration method that uses four or more common points. For each frame of a given video, a partial structure is recovered using tracked points. The 3D coordinates, camera positions and camera directions are computed at once by our improved scaled orthographic factorization method. The partially recovered point sets are parts of a whole model. A registration of point sets makes the complete shape. The recovered subsets are integrated by transforming each coordinate system of the local point subset into a common basis coordinate system. The process of shape recovery and integration is performed uniformly and linearly without any nonlinear iterative process and without loss of accuracy. The execution time for the integration is significantly reduced relative to the conventional ICP method. Due to the fast recovery and registration framework, our shape recovery scheme is applicable to various interactive video applications. The processing time per frame is under 0.01 seconds in most cases and the integration error is under 0.1mm on average.

  • PDF

Human Legs Motion Estimation by using a Single Camera and a Planar Mirror (단일 카메라와 평면거울을 이용한 하지 운동 자세 추정)

  • Lee, Seok-Jun;Lee, Sung-Soo;Kang, Sun-Ho;Jung, Soon-Ki
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1131-1135
    • /
    • 2010
  • This paper presents a method to capture the posture of the human lower-limbs on the 3D space by using a single camera and a planar mirror. The system estimates the pose of the camera facing the mirror by using four coplanar IR markers attached on the planar mirror. After that, the training space is set up based on the relationship between the mirror and the camera. When a patient steps on the weight board, the system obtains relative position between patients' feet. The markers are attached on the sides of both legs, so that some markers are invisible from the camera due to the self-occlusion. The reflections of the markers on the mirror can partially resolve the above problem with a single camera system. The 3D positions of the markers are estimated by using the geometric information of the camera on the training space. Finally the system estimates and visualizes the posture and motion of the both legs based on the 3D marker positions.