• Title/Summary/Keyword: relative entropy

Search Result 77, Processing Time 0.023 seconds

A Study on Selection of Standard Scenarios in Korea for Climate Change (기후변화 표준 시나리오 선정에 관한 연구)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.59-73
    • /
    • 2010
  • One of the most important issues for projecting future water resources and establishing climate change adaptation strategies is 'uncertainty'. In Korea, climate change research results were very heterogeneous even in a same basin, but there have been few climate change studies dealt with the uncertainty reduction. This is because emission scenarios, GCMs, downscaling, and rainfall-runoff models that were used in the previous studies were almost all different. In this research, fifty one GCM scenarios based A and B emission scenarios were downloaded and then compared with the observed values for a period from January 2001 to December 2008. The downloaded GCM scenarios in general simulated well the observed but did not simulated well the observed precipitation especially for the flood season in Korea. The accuracy of each GCM scenario was measured with the model efficiency, PDF-based, and Relative Entropy methodology. Among the selected GCM scenarios with three methodologies, the four common GCM scenarios(CGCM2.3.2(MRI-M, B1), MIROC3.2medress(NIES, B1), CGCM2.3.2(MRI-M, A2), CGCM2.3.2(MRI-M, A1B) were finally selected. Results of the four selected GCMs were heterogeneity and projected increases of precipitation for the Korean Peninsula by from 27.36% to 12.49%, respectively. It seems very risky to rely a water planning or a management policy on use of a single climate change scenario and from this research results. Therefore, the four selected GCM scenarios proposed quantitatively were considered firstly for the water supply in the dry season and the drought management strategy in the Korean Peninsula for the future.

A Risk-Return Analysis of Loan Portfolio Diversification in the Vietnamese Banking System

  • HUYNH, Japan;DANG, Van Dan
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.105-115
    • /
    • 2020
  • The study empirically examines the effects of loan portfolio diversification on bank risk and return in the nascent banking market of Vietnam. Loan portfolio diversification is captured through the Hirschman-Herfindahl index and the Shannon Entropy with sectoral exposures. We access each bank's financial reports to collect the required data, especially the breakdown of sectoral loan portfolios, thus constituting a unique dataset. To compute bank return, we use the traditional accounting indicators, including return-on-assets, return-on-equity, and net-interest margin. For bank risk, we utilize the loan-loss provisions and non-performing loans relative to gross customer loans. Using a sample of 30 commercial banks over the period from 2008 to 2019 and the system generalized method of moments estimator for the dynamic panel, we indicate the downsides of portfolio diversification. Concretely, we observe that all diversification measures exhibit significantly negative signs in all regressions across different bank return proxies. At the same time, the estimates display the significant and positive impact of diversification on the non-performing loan ratio. Hence, sectoral loan portfolio diversification significantly hampers bank performance in both aspects of lower return and higher credit risk. The results are robust across a rich set of bank performance and portfolio diversification measures.

A DoS Detection Method Based on Composition Self-Similarity

  • Jian-Qi, Zhu;Feng, Fu;Kim, Chong-Kwon;Ke-Xin, Yin;Yan-Heng, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1463-1478
    • /
    • 2012
  • Based on the theory of local-world network, the composition self-similarity (CSS) of network traffic is presented for the first time in this paper for the study of DoS detection. We propose the concept of composition distribution graph and design the relative operations. The $(R/S)^d$ algorithm is designed for calculating the Hurst parameter. Based on composition distribution graph and Kullback Leibler (KL) divergence, we propose the composition self-similarity anomaly detection (CSSD) method for the detection of DoS attacks. We evaluate the effectiveness of the proposed method. Compared to other entropy based anomaly detection methods, our method is more accurate and with higher sensitivity in the detection of DoS attacks.

Polymer Adsorption and fiber Dispersion Stability of a Paper Stock Colloidal Suspension with a PAC-PAE Dual Polymer System (PAC-PAE 2중 고분자 내첨 지료의 고분자 흡착 및 교질 분산계의 안정성 연구)

  • 윤성훈;김태영;김덕기;송병규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The adsorption of co-cationic dual polymer system was investigated as was the fiber dispersion stability of a paper stock suspension. Polyaluminum chloride(PAC) and polyamidoamine epichlorohy-drin(PAE) polymers were used as wet-end additives. The adsorbed amounts of PAE polymer in a wet stock were measured by using polyelectrolytic PCD titration. The sheet forming experiments were carried out in a standard handsheet machine. Fiber dispersion stability and relative retention were evaluated in terms of M/K non-uniformity index and sheet basis weight, respectively. The PAE polymer adsorption of Langmuir-isothermal type decreased with increasing PAC addition level. The combination of the two cationic polymers presumably exerts a site-blocking effect by the low molecular weight PAC which gives a partial charge neutralization at a minimum level of addition. From a thermodynamic view point of PAE adsorption, an increase in adsorption entropy and a decrease in train number suggests that the PAR polymer has an extended conformation structure that potentially leads to an enhancement of the fiber dispersion stability. This conclusion is supported by handsheet experiments that examined the PAC-PAE dual polymer effects on the sheet formation and retention.

Rotor Blade Sweep Effect on the Performance of a Small Axial Supersonic Impulse Turbine

  • Jeong, Sooin;Choi, Byoungik;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.571-580
    • /
    • 2015
  • In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.

Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow (터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析))

  • Cho, Kang-Rae;Oh, Jong-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

The Study on the Physicochemical Properties of Fluid under High Pressure (1). Effects of Pressure and Temperature on the Pentamethyl Benzene-Iodine Charge Transfer Complex in n-HexaneⅠ

  • Kim, Jeong-Rim;Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.74-79
    • /
    • 1985
  • The stabilities of the charge transfer complexes of pentamethyl benzene with iodine in n-hexane have been investigated by UV-spectrophotometric measurements at 25, 40 and 60$^{\circ}C$ up to 1600 bars. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red-shift at higher pressure, the blue-shift at higher temperature, and the relation between pressure and oscillator strength have been discussed by means of thermodynamic functions. In comparison with the results in the previous studies, the absolute values of ${\Delta}$V at each temperature were increased with the number of methyl groups of polymethyl benzene. However, it can be seen that both ${\Delta}$H and ${\Delta}$S show extreme behaviors in durene near atmospheric pressure but they are negatively increased with the number of methyl groups near 1600 bar. This order of the thermodynamic parameters may be a measure of the relative basicities of polymethyl benzenes toward iodine under each pressure, and these phenomena are explained in terms of a positive inductive effect and a steric hindrance effect of the polymethyl benzene molecule.

Experimental Study and Correlation of the Solid-liquid Equilibrium of Some Amino Acids in Binary Organic Solvents

  • Mustafa Jaipallah Abualreish;Adel Noubigh
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.173-180
    • /
    • 2024
  • Under ordinary atmospheric circumstances, the gravimetric technique was used to measure the solubility of L-cysteine (L-Cys) and L-alanine (L-Ala) in various solvents, including methyl alcohol, ethyl acetate, and mixtures of the two, in the range o 283.15 K to 323.15 K. Both individual solvents and their combinations showed a rise in the solubility of L-Cys and L-Ala with increasing temperature, according to the analyzed data but when analyzed at a constant temperature in the selected mixed solvents, the solubility declined with decreasing of initial mole fractions of methyl alcohol. To further assess, the relative utility of the four solubility models, we fitted the solubility data using the Jouyban-Acree (J-A), van't Hoff-Jouyban-Acree (V-J-A), Apelblat-Jouyban-Acree (A-J-A), and Ma models followed by evaluation of the values of the RAD information criteria and the RMSD were. The dissolution was also found to be an entropy-driven spontaneous mixing process in the solvents since the thermodynamic parameters of the solvents were determined using the van't Hoff model. In order to support the industrial crystallization of L-cysteine and L-alanine and contribute to future theoretical research, we have determined the experimental solubility, correlation equations, and thermodynamic parameters of the selected amino acids during the dissolution process.

Uncertainty analysis of quantitative rainfall estimation process based on hydrological and meteorological radars (수문·기상레이더기반 정량적 강우량 추정과정에서의 불확실성 분석)

  • Lee, Jae-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.439-449
    • /
    • 2018
  • Many potential sources of bias are used in several steps of the radar-rainfall estimation process because the hydrological and meteorological radars measure the rainfall amount indirectly. Previous studies on radar-rainfall uncertainties were performed to reduce the uncertainty of each step by using bias correction methods in the quantitative radar-rainfall estimation process. However, these studies do not provide comprehensive uncertainty for the entire process and the relative ratios of uncertainty between each step. Consequently, in this study, a suitable approach is proposed that can quantify the uncertainties at each step of the quantitative radar-rainfall estimation process and show the uncertainty propagation through the entire process. First, it is proposed that, in the suitable approach, the new concept can present the initial and final uncertainties, variation of the uncertainty as well as the relative ratio of uncertainty at each step. Second, the Maximum Entropy Method (MEM) and Uncertainty Delta Method (UDM) were applied to quantify the uncertainty and analyze the uncertainty propagation for the entire process. Third, for the uncertainty quantification of radar-rainfall estimation at each step, two quality control algorithms, two radar-rainfall estimation relations, and two bias correction methods as post-processing through the radar-rainfall estimation process in 18 rainfall cases in 2012. For the proposed approach, in the MEM results, the final uncertainty (from post-processing bias correction method step: ME = 3.81) was smaller than the initial uncertainty (from quality control step: ME = 4.28) and, in the UDM results, the initial uncertainty (UDM = 5.33) was greater than the final uncertainty (UDM = 4.75). However uncertainty of the radar-rainfall estimation step was greater because of the use of an unsuitable relation. Furthermore, it was also determined in this study that selecting the appropriate method for each stage would gradually reduce the uncertainty at each step. Therefore, the results indicate that this new approach can significantly quantify uncertainty in the radar-rainfall estimation process and contribute to more accurate estimates of radar rainfall.

Feature Extraction for Bearing Prognostics based on Frequency Energy (베어링 잔존 수명 예측을 위한 주파수 에너지 기반 특징신호 추출)

  • Kim, Seokgoo;Choi, Joo-Ho;An, Dawn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.128-139
    • /
    • 2017
  • Railway is one of the public transportation systems along with shipping and aviation. With the recent introduction of high speed train, its proportion is increasing rapidly, which results in the higher risk of catastrophic failures. The wheel bearing to support the train is one of the important components requiring higher reliability and safety in this aspect. Recently, many studies have been made under the name of prognostics and health management (PHM), for the purpose of fault diagnosis and failure prognosis of the bearing under operation. Among them, the most important step is to extract a feature that represents the fault status properly and is useful for accurate remaining life prediction. However, the conventional features have shown some limitations that make them less useful since they fluctuate over time even after the signal de-noising or do not show a distinct pattern of degradation which lack the monotonic trend over the cycles. In this study, a new method for feature extraction is proposed based on the observation of relative frequency energy shifting over the cycles, which is then converted into the feature using the information entropy. In order to demonstrate the method, traditional and new features are generated and compared using the bearing data named FEMTO which was provided by the FEMTO-ST institute for IEEE 2012 PHM Data Challenge competition.