• Title/Summary/Keyword: relative angle

Search Result 806, Processing Time 0.033 seconds

Statistical Model for Typhoon-Induced Rainfall around Korean Peninsular (한반도의 태풍 동반 강우의 통계적 모형)

  • Ku, Hye-Yun;Lee, Sung-Su;Lee, Young-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.45-51
    • /
    • 2008
  • Due to recent increases of typhoon damages primarily owing to heavy rainfall and stron wind, estimation and analysis of a typhoon's influence has become more important. In this perspective, the statistical models to estimate the rainfall rate during a typhoon were presented in this paper. Central pressure of the typhoon is modeled to be the primary parameter affecting typhoon rainfall rate while relative angle and distance between the center of typhoon and the specific location for observation are secondary variables. Comparisons between the estimated rainfall rate of these models and the observed value in the duration of Typhoon NARI(2007) were analyzed to confirm the availability of these models. The result shows that the present statistical models can estimate typhoon-induced rainfall around Korean Peninsular to some extent.

A Study on Development of the EM Wave Absorber for ETC System

  • Park, Soo-Hoon;Kim, Dong-Il;Song, Young-Man;Yoon, Sang-Gil
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for countermeasure against EMI from a ceiling of a tollgate in ETC system. We fabricated several samples in different composition ratios of MnZn-ferrite, Carbon, and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability according to composition ratio. The optimized mixing ratio of MnZn-ferrite, Carbon, and CPE was found as 40:15:45 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has the thickness of 3.3 mm and absorption ability was more than 20 dB in the case of normal incidence and more than 11 dB for the incident angle from 15 to 45 degrees at 5.8 GHz. Therefore, it was confirmed that the newly developed absorber can be used for ETC system.

Thermal stress Intensity Factors for the Interfacial Crack on a Cusp-Type Inclusion (커스프형 강체함유물 상의 접합경계면 균열에 대한 열응력세기계수)

  • 이강용;장용훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1255-1265
    • /
    • 1992
  • Under uniform heat flow, the thermal stress intensity factors for the interfacial crack on a rigid cusp-type inclusion are determined by Hilbert problem expressed with complex variable. The thermal stress intensity factors are expressed in terms of the periodic function of heat flow angle. When the tip of the interfacial crack meets that of the cusp crack, the thermal stress intensity factors have singularities. The thermal stress intensity factors at the interfacial crack tip located in the distance from the cusp crack tip vary with the location of the interfacial crack tip. From the results of the analysis, the complex potential functions and the thermal stress intensity factors for the cusp-type inclusion without the interfacial crack are derived under the cusp surface boundary conditions insulated or fixed to zero relative temperature.

Estimation of the PAR Irradiance Ratio and Its Variability under Clear-sky Conditions at Ieodo in the East China Sea

  • Byun, Do-Seong;Cho, Yang-Ki
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.235-244
    • /
    • 2006
  • Determining 'photosynthetically active radiation' (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM. Preliminary results suggest that the use of simple PAR irradiance-ratio values is appropriate in calculating phytoplankton productivity as follows: an average of $0.44\;({\pm}0.01)$ in January to an average of $0.48\;({\pm}0.01)$ in July, with average daily variabilities over these periods of about $0.016\;({\pm}0.008)$ and $0.025\;({\pm}0.008)$, respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

A Study on Machining Information Analysis of Disk Cam using Circular Interpolation (원호보간법을 이용한 평면 캠 가공 정보 분석에 관한 연구)

  • Cho, I.Y.;Kim B.J.;Kim J.C.;Shin J.H.;Kwon S.M.;Woo J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1678-1681
    • /
    • 2005
  • The disk cam mechanism cam produce a positive motion with a relatively few components. In the present paper a shape design of cam using the relative velocity method and the machining information analysis using the circular interpolation are introduced. In the first part of the paper a machining information at each point using the circular interpolation is taken. This study purposes the analysis method of the cutting error due to the moving path of the cutter, so that we can lead to the optimum design in a disk cam mechanism..

  • PDF

Numerical Optimization of a Multi-blades Centrifugal Fan for High-efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.32-38
    • /
    • 2004
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard $k-{epsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

Evaluation of Behaviors on Mooring Line Embedded in Sand Using Centrifuge Test (원심모형실험을 이용한 모래지반에 관입된 계류선 거동 평가)

  • Lee, Hoon Yong;Kim, Surin;Kim, Jaehyun;Kim, Dong-Soo;Choo, Yun Wook;Kwo, Osoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • When an anchor penetrates and is installed under a seabed, a portion of the mooring line connected to the anchor is also embedded under the seabed. This embedded mooring line affects the capacity of the anchor in two ways. First, the frictional resistance that occurs between the mooring line and the seabed reduces the pulling force acting on the anchor. Second, the embedded part of the mooring line forms a reverse catenary shape due to the bearing resistance of the soil, so that an inclined pulling force is applied to the anchor. To evaluate the mooring line's effect on the capacity of an anchor in sand, centrifuge model tests were performed using two relative sand densities of 76% and 51% while changing the anchor depths. The test results showed that the load is reduced much more in deep and dense sand, and the inclination angle of the load is lower in shallow and loose sand.

Study on the Skin of Hand Lesser Yang from the Viewpoint of Human Anatomy

  • Park, Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.69-73
    • /
    • 2015
  • Objectives: This study was carried out to analyse the skin of the Hand lesser yang in human. Methods: The Hand lesser yang meridian was labeled with latex in the body surface of the cadaver, subsequently dissecting a body among superficial fascia and muscular layer in order to observe internal structures. Results: This study has come to the conclusion that a depth of the skin has encompassed a common integument and a immediately below superficial fascia, and this study established the skin boundary with adjacent structures such as relative muscle, tendon as compass. The skin area of the Hand lesser yang in human is as follows: The skin close to the ulnar root angle of 4th finger nail, above between 4th and 5th metacarpal bone, between extensor digit. minimi tendon(t.) and extensor digit. t., extensor digit. m(muscle). at 2, 4, 7 cun above dorsal carpal striation, triceps brachii m. t., deltoid m., trapezius m., just around the ear, upper orbicularis oculi m. Conclusions: The skin area of the Hand lesser yang from anatomical viewpoint seems to be the skin area outside the superficial fascia or the muscle involved in the pathway of the Hand lesser yang meridian, the collateral meridian, the meridian muscle, with the condition that we consider adjacent skins.

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.