• Title/Summary/Keyword: relative angle

Search Result 806, Processing Time 0.025 seconds

Characteristics of Friction Angles between the Nak-dong River Sand and Construction Materials by Direct Shear Test (낙동강 모래와 건설재료간의 직접전단시험에 의한 마찰각 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.105-112
    • /
    • 2009
  • In this study, a series of direct shear tests were performed to investigate the characteristics of friction angles for sands and interface friction angle between sands and construction materials with respect to different relative density of the Nak-dong River sands and shearing velocity. The result of the test shows that friction angles of sands are always higher than interface friction angle between sands and construction materials. As the shearing velocity get faster, the friction angles of sand became higher. With respect to the density of sand by reducing void ratio, friction angles increase linearly, and relevant equations were proposed to calculate the friction angle by changing void ratio and relative density of sand. The interface roughness of construction materials was also an important factor in interface friction angle.

Studies on the Fundamental Properties of the Wood of Gumgangsong(Pinus densoflora for. erecta Uyeki) (Part 1) (강송의 기초적 재질에 관한 연구(제1보))

  • 김정환;이원희;홍선천
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.2
    • /
    • pp.55-61
    • /
    • 1999
  • This research was carried out to investigate the fundamental properties such as the structure of annual ring, density distribution, compressive strength with parallel to grain, relative crystallinity, and microfibril angle of Gumgangsong(Pinus densoflora for. erecta Uyeki). The wood specimens, Gumgangsong and Sonamu(Pinus densiflora S. et Z.), for this experiment were prepared at Ulijingoon Sokwangri and Kyungpook university's forest in Kyungpook province, respectively. Average annual ring width is $2.0mm{\pm}0.3$ in heartwood of Gumgangsong. The respectively of heart wood was over 60 percent in Gumgangsong and 20~50 percent in Sonamu. Heartwood density were ranged from 0.5 to $0.8{\;}g/cm^3$ in Gumgangsong and from 0.4 to $0.5{\;}g/cm^3$ in sonamu. Compressive strength in Gumgangsong and Sonamu was about $30{\pm}5MPa$ and $25{\pm}5MPa$, resepectively. But the relative crystallinity and microfibril angle of two species were not different clearly. From these results of Gumgangsong and Sonamu, therefore, it was considered the main difference factors for both species were annual ring width and heartwood percentage.

  • PDF

Analysis of the Dimensionless Torque in Cone Drum False Twisting Mechanism

  • Lee, Choon-Gil;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.161-168
    • /
    • 2003
  • An investigation of the dimensionless torque in the newly developed cone drum twister texturing mechanism is reported. The cone drum twister is one of the outer surface contacting friction-twisting devices in false-twist texturing. In this cone drum twister, a filament yam passes over the surface of the cone drum that rotates by the passing yarn without a special driving device. This research is composed of the theoretical analysis of the false twisting mechanism and the experimental analysis at room temperature. The equations have been derived which shows interrelationship of the conical angle of cone drum, the wrapping angle, the drag angle, and the yam helix angle. Theoretical values of dimensionless torque were calculated and were compared with the experimental results. It is shown that, as the conical angle and the projected wrapping angle increased, the dimensionless torque also increased. But the conical angle was reached to ${30.75}^{\circ}C$, the dimensionless torque decreased.

Aerodynamic Analysis of Counter-Rotating Propfans Around a Missile-Like-Body Using a Frequency Domain Panel Method (주파수영역 패널기법을 사용한 유도무기형태 동체에 장착된 엇회전식 프롭팬의 공력해석)

  • 조진수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1590-1597
    • /
    • 1994
  • The aerodynamic analysis of a $6{\times}6$ counter-rotating propfan around a missile-like-body has been completed analytically using a frequency domain panel method. The present method requires Fourier transformation of flow field around the propfan in computing the velocities normal to the propfan lifting surfaces. The aerodynamic performance curve is determined by angle of attack and nonuniform inflow conditions. The inflow conditions result from the variations of missile flight speed, angle of attack, propfan location relative to control surfaces and control surface deflection angle. The two cases of propfan location relative to control surface, front and behind, are analyzed and the aerodynamic results are presented.

Leader-Follower Based Formation Control of Multiple Mobile Robots Using the Measurements of the Follower Robot (추종 로봇의 측정값들을 이용한 다중 이동 로봇의 선도-추종 접근법 기반 군집 제어)

  • Park, Bong Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.385-389
    • /
    • 2013
  • This paper proposes the leader-follower based formation control method for multiple mobile robots. The controller is designed using the measurements of the follower robot such as the relative distance and angle between the leader and the follower. This means that the follower robot does not require the information of the leader robot while keeping the desired formation. Therefore, the proposed control method can reduce the communication loss and the cost for hardware. From Lyapunov stability theory, it is shown that all error signals in the closed-loop system are uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the proposed control system.

Angular Kinematic and Cross-correlation Analysis between Body Segments and Ski among Alpine Ski Turning Techniques (알파인 스키 회전기술에 따른 인체분절과 스키 간 각운동학 및 상호상관분석)

  • Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.205-215
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the relative angles and cross-correlation between body segments and ski among four alpine ski turning techniques. Method: 19 alpine ski instructors participated in this study. Each skier asked to perform 4- types of turning technique, classified by radius and level. 8 inertial measurement units were used to measure orientation angle of segment and ski on the anteroposterior and vertical axis. Results: Significant differences were found between types of turning in the segments-ski relative angle on the anteroposterior and vertical axis (p<.05). Although, cross-correlation showed a high correlation between angles of segment and ski, there were significant differences between types of turning. Conclusion: Based on our results, the relative movement and timing between each segment and ski is different according to the turning techniques, so the training methods should be applied differently.

The Kinematic Analysis of the Upper Extremity during Backhand Stroke in Squash (스쿼시 백핸드 드라이브 동작시 상지 분절의 운동학적 변인 분석)

  • An, Yong-Hwan;Ryu, Ji-Seon;Ryu, Ho-Young;Soo, Jae-Moo;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2007
  • The purposes of this study were to investigate kinematic parameters of racket head and upper extremities during squash back hand stroke and to provide quantitative data to the players. Five Korean elite male players were used as subjects in this study. To find out the swing motion of the players, the land-markers were attached to the segments of upper limb and 3-D motion analysis was performed. Orientation angles were also computed for angular movement of each segment. The results were as follows. 1) the average time of the back hand swing (downswing + follow-through) was 0.39s (0.24 s + 0.15 s). 2) for each event, the average racket velocity at impact was 11.17m/s and the velocity at the end of swing was 8.03m/s, which was the fastest swing speed after impact. Also, for each phase, 5.10m/s was found in down swing but 7.68m/s was found in follow-through. Racket swing speed was fastest after the impact but the swing speed was reduced in the follow-through phase. 3) in records of average of joints angle, shoulder angle was defined as the relative angle to the body. 1.04rad was found at end of back swing, 1.75rad at impact and it changes to 2.35 rad at the end of swing. Elbow angle was defined as the relative angle of forearm to upper arm. 1.73rad was found at top of backswing, 2.79rad at impact, and the angle was changed to 2.55rad at end of swing. Wrist angle was defined as the relative angle of hand to forearm. 2.48rad was found at top of backswing, 2.86rad at impact, and the angle changes to 1.96rad at end of swing. As a result, if the ball is to fly in the fastest speed, the body has to move in the order of trunk, shoulder, elbow and wrist (from proximal segment to distal segment). Thus, the flexibility of the wrist can be very important factor to increase ball speed as the last action of strong impact. In conclusion, the movement in order of the shoulder, elbow and the wrist decided the racket head speed and the standard deviations were increased as the motion was transferred from proximal to the distal segment due to the personal difference of swing arc. In particular, the use of wrist (snap) may change the output dramatically. Therefore, it was concluded that the flexible wrist movement in squash was very important factor to determine the direction and spin of the ball.

Design of the Zero Location for Minimizing the Peak Overshoot of Second-Order Discrete Systems (이차 이산 시스템의 Peak Overshoot을 최소화하기 위한 영점의 위치 설계)

  • Lee, Jae-Seok;Chung Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.483-493
    • /
    • 2002
  • The damping ratio ${\xi}$ of the unit-step response of a second-order discrete system is a function of only the location of the closed-loop poles and is not directly related to the location of the system zero. However, the peak overshoot of the response is the function of both the damping ratio ${\xi}$ and an angle ${\alpha}$, which is the phasor angle of the damped sinusoidal response and is determined by the relative location of the zero with respect to the closed-loop poles. Therefore, if the zero and the open-loop poles are relatively adjusted, through pole-zero cancellation, to maintain the desired (or designed) closed-loop poles, the damping ratio ${\xi}$ will also be maintained, while the angle ${\alpha}$ changes. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is considered as a function of the angle ${\alpha}$ or the system zero location. In this paper the effects of the relative location of the zero on the system performance of a second-order discrete system is studied, and a design method of digital compensator which achieves a minimum peak overshoot while maintaining the desired system mode and the damping ratio of the unit step response is presented.

The Changes in the Physical Properties of Soil with Tillage Methods (I)

  • Park, Jun-Gul;Lee, Gu-Seung;Cho, Sung-Chan;Chang, Young-Chang;Noh, Kwang-Mo;Chung, Sun-Ok
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.59-64
    • /
    • 2005
  • In the study, the cone index, the cohesion and the internal resistant angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties. The tillage methods tested in the study were five combinations of plow and rotary tillage operation and the experiments were performed on five selected test fields. The maximum tillage depth was 20 cm under the ground. The CIs for all the tillage operations were improved in comparison with those before tillage. The best combination of tillage operations for improving the CIs of soil was one plow operation followed by one rotary. After applying the tillage operations, the internal resistance angle reduced by 7-8 degree and the cohesion decreased up to about $1N/cm^2$ in comparison with those before tillage. We concluded that the cone index, the cohesion and the internal resistant angle of soil could be used as measures for representing the relative degree of tillage for a specific tillage operation. In addition, the study was useful as a basic research tool for developing an decision making system that determines an optimal tillage method with soil properties.

  • PDF

The effect of position of propeller fan relative to duct inlet on flow characteristics (프로펠러 팬과 덕트와의 상대위치가 유동특성에 미치는 영향)

  • Sim, W.C.;Cho, K.R.;Joo, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 1997
  • The position of propeller fan from duct inlet is one of basic parameters for the design of propeller fan. To investigate the effect of its position on fan characteristics, the inlet flow fields and relative flow angles were measured by a 5-hole pitot tube. The experimental results indicate that the ratio of radial flow introduced from propeller circumference to total inlet flow increases with the increase of propeller distance from duct inlet. When fan operates without duct, the total flow rate and the radial flow ratio are higher than those of any other positions of propeller relative to duct inlet. The radial flow ratio decreases as a flow coefficient and the propeller distance decrease. Therefore the front flow fields can be adjusted in some extent by varying the propeller distance according to a fan loading. The inlet flow angles are decreasing a little as a rotational speed and the propeller distance decrease. In the present case it was judged that the deviation angle of outlet flow became negative owing to a flow separation near a trailing edge.

  • PDF