• Title/Summary/Keyword: relative angle

Search Result 806, Processing Time 0.12 seconds

Pressure and Flow Distribution in the Inlet Plenum of a Pebble Bed Modular Reactor (PBMR)

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.244-249
    • /
    • 2005
  • Flow distribution and pressure drop analysis for an inlet plenum of a Pebble Bed Modular Reactor (PBMR) have been performed using Computational Fluid Dynamics. Three-dimensional Navier-Stokes equations have been solved in conjunction with $k-{\epsilon}$ model as a turbulence closure. Non-uniformity in flow distribution is assessed for the reference case and parametric studies have been performed for rising channels diameter, Reynolds number and angle between the inlet ports. Also, two different shapes of the inlet plenum namely, rectangular shape and oval shape, have been analysed. The relative flow mal-distribution parameter shows that the flow distribution in the rising channels for the reference case is strongly non-uniform. As the rising channels diameter decreases, the uniformity in the flow distribution as well as the pressure drop inside the inlet plenum increases. Reynolds number is found to have no effect on the flow distribution in the rising channels for both the shapes of the inlet plenum. The increase in angle between the inlet ports makes the flow distribution in the rising channels more uniform.

  • PDF

Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process (머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발)

  • Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.

Rotor Blade Sweep Effect on the Performance of a Small Axial Supersonic Impulse Turbine

  • Jeong, Sooin;Choi, Byoungik;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.571-580
    • /
    • 2015
  • In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.

The Returning Force Analysis of Working Fluid and the Heat Transfer Characteristics in Revolving Heat Pipe Heat Exchanger (회전형 히트파이프 열교환기의 작동유체 귀환력 해석 및 열전달특성에 관한 연구)

  • 이기우;박기호;전원표
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.214-222
    • /
    • 2001
  • The purpose of this research it to develop gas-air rotary heat exchanger using heat pipe and the performances were examined by way of the theoretical analysis and the experiment. Centrifugal force to return the working fluid in heat pipe elements with different radius was evaluated as a function of the revolution speed and inclination angle, and a rotary heat exchanger with 60 heat pipes in 3 rows was designed and manufactured. The inclination angle of a heat pipe relative to the revolving axis was designed to be 2$^{\circ}$and water was used as a working fluid. Experimental result showed the heat exchange rate was enhanced by 16% with compared to the calculated value.

  • PDF

Radiologic Assessment of Normal Acromial Arch (정상인의 견봉궁 형태에 대한 방사선 계측)

  • Hahn Sung Ho;Yang Bo Kyu;Yi Seung Rim;Jung Sun Uk;Yoo Sung Hwan
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.2
    • /
    • pp.106-109
    • /
    • 1999
  • Purpose : The purpose of this study is to evaluate morphology of acromion in relation to age and symmetry in asymptomatic adults. Materials and Methods: Seventy five asymptomatic adults were divided into two groups by age(A group of age twenties and B group of age over forty) and both acromial outlet views were obtained. One hundred fifty radiographs were typed and assessed radiologically by methods of Getz and Liotard. Results: The relative percentages of acromial types I, Ⅱ, and Ⅲ were 3%, 90% and 7% in the A group and 6%, 82% and 12% in the B group respectively, Subacromial peak and spinoacromial angle were 4.3mm, 82 degrees in the A group and 4.6mm, 78 degrees in the B group. Conclusion: Incidence of type is not related to age in normal adult and type II is the most common type. Spinoacromial angle is decreased in older age group and type Ⅲ.

  • PDF

A Propagation Prediction Model for Planning a Cell in the PCS System (PCS 시스템 셀설계를 위한 전파예측 모델)

  • 김송민
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.103-112
    • /
    • 1998
  • This paper proposes a propagation prediction model which can calculate a propagation path loss easily at option point in case of the propagation processing by repeat reflection when we analysis a propagation route, it makes the calculation speed which is the defect of a geometrical of image method and a ray-launching method improve and we develop and apply the algorithms which can do an angle of incidence, an angle of reflection with a propagation direct path, a reflection path and a maximum reflection number arithmetic process synchronously. Finally we choose as a sample which is the real road condition where is around SK telecoms chunnam branch office in wolgok-dong, kwangsan-ku, kwangju and simulate proposition model then we demonstrate the relative superiority with comparing the results.

  • PDF

Transmit-Nulling SDMA for Coexistence with Fixed Wireless Service

  • Jo, Han-Shin;Mun, Cheol
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper proposes a systematic design for a precoding codebook for a transmit-ing space-division multiple access (TN-SDMA) sharing spectrum with existing fixed wireless service (FWS). Based on an estimated direction angle of a victim FWS system, an interfering transmitter adaptively constructs a codebook, forming a transmit in the direction angle, while satisfying orthogonal beamforming constraints. Sum throughput results indicate that the throughput loss of TN-SDMA relative to a practical SDMA, called per user unitary and rate control ($PU^2RC$), is lower at larger number of transmission antennas, lower signal-to-noise ratio, or a smaller number of users. In particular, a small loss (12% throughput loss) is provided for practical system parameters. Spectrum sharing results confirm that TNSDMA efficiently shares spectrum with FWS systems by reducing protection distance to more than 66 %. Although a TN-SDMA system always has lower throughput compared to $PU^2RC$ in non-coexistence scenarios; it offers an intriguing opportunity to re-use a spectrum already allocated to an FWS.

Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors (속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종)

  • Cho, Namsub;Kwon, Ji-Wook;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

Improving the Self-starting Performance of a VAWT (수직축 풍차의 자기동 성능 개선)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Shon, Jae-Yul;Mag-isa, Alexander;Kim, Shin-Ho;Choi, Myoung-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.13-20
    • /
    • 2006
  • The inherent problem of a Darrieus wind turbine is its inability to self-start. Usually, a motor is used to provide angular acceleration until lift forces are produced in the airfoil blades or up until the turbine can already sustain its speed on its own. This paper describes a method of improving the self-starting of an H-type Darrieus vertical axis wind turbine (VAWT) by incorporating a helical Savonius turbine thus utilizing a drag-lift combination. The effect of each turbine in the combination relative to each other is investigated by testing a prototype windmill consisting of three NACA 0015 airfoil blades combined with a Savonius rotor with a helix angle of 180 degrees and whose swept area equals 30% of the entire turbine.

  • PDF

Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates (폴리카보네이트 판의 경사충격에 의한 도비 거동 수치연구)

  • Yang, Tae-Ho;Lee, Young-Shin;Jo, Jong-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the numerical simulation using AUTODYN-3D program was investigated angle trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the polycabonate plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The effect of the angle of inclination on the trajectory and kinetic energy of the projectile were studied. The dynamic deformation behaviors tests of polycabonate were compared with numerical simulation results which can be used as predictive purpose. From the simulation, the ricochet phenomenon was occurred for angles of inclination of $0^{\circ}{\leq}{\theta}{\leq}20^{\circ}$. The projectile perforated the plate for ${\theta}{\leq}30^{\circ}$, thus defining a failure envelope for numerical configuration. The numerical analyses are used to study the effect of the projectile impact velocity on the depth of penetration (DOP). It can be observed that the residual velocities were almost linear relative to penetration velocities. It means that polycarbonate has high resistance at higher velocities.