• Title/Summary/Keyword: related density

Search Result 2,491, Processing Time 0.031 seconds

Axonal sprouting in the dorsal cochlear nucleus affects gap-prepulse inhibition following noise exposure

  • Kyu-Hee Han;Seog-Kyun Mun;Seonyong Sohn;Xian-Yu Piao;Ilyong Park;Munyoung Chang
    • International Journal of Molecular Medicine
    • /
    • v.44 no.4
    • /
    • pp.1473-1483
    • /
    • 2019
  • One of the primary theories of the pathogenesis of tinnitus involves maladaptive auditory-somatosensory plasticity in the dorsal cochlear nucleus (DCN), which is assumed to be due to axonal sprouting. Although a disrupted balance between auditory and somatosensory inputs may occur following hearing damage and may induce tinnitus, examination of this phenomenon employed a model of hearing damage that does not account for the causal relationship between these changes and tinnitus. The present study aimed to investigate changes in auditory-somatosensory innervation and the role that axonal sprouting serves in this process by comparing results between animals with and without tinnitus. Rats were exposed to a noise-inducing temporary threshold shift and were subsequently divided into tinnitus and non-tinnitus groups based on the results of gap prepulse inhibition of the acoustic startle reflex. DCNs were collected from rats divided into three sub-groups according to the number of weeks (1, 2 or 3) following noise exposure, and the protein levels of vesicular glutamate transporter 1 (VGLUT1), which is associated with auditory input to the DCN, and VGLUT2, which is in turn primarily associated with somatosensory inputs, were assessed. In addition, factors related to axonal sprouting, including growth-associated protein 43 (GAP43), postsynaptic density protein 95, synaptophysin, α-thalassemia/mental retardation syndrome X-linked homolog (ATRX), growth differentiation factor 10 (GDF10), and leucine-rich repeat and immunoglobulin domain-containing 1, were measured by western blot analyses. Compared to the non-tinnitus group, the tinnitus group exhibited a significant decrease in VGLUT1 at 1 week and a significant increase in VGLUT2 at 3 weeks post-exposure. In addition, rats in the tinnitus group exhibited significant increases in GAP43 and GDF10 protein expression levels in their DCN at 3 weeks following noise exposure. Results from the present study provided further evidence that changes in the neural input distribution to the DCN may cause tinnitus and that axonal sprouting underlies these alterations.

Nicotinamide N-methyltransferase induces the proliferation and invasion of squamous cell carcinoma cells

  • YOUNG‑SOOL HAH;HEE YOUNG CHO;SUN YOUNG JO;YOUNG SOOK PARK;EUN PHIL HEO;TAE‑JIN YOON
    • Oncology Letters
    • /
    • v.42 no.5
    • /
    • pp.1805-1814
    • /
    • 2019
  • Cutaneous squamous cell carcinoma (cSCC) is a common malignancy initiated by keratinocytes of the epidermis, which are able to invade the dermis and its periphery. Although most patients with cSCC present with curable localized tumors, recurrence, metastasis and mortality occasionally occur. In the present study, nicotinamide N-methyltransferase (NNMT) was identified as an upregulated protein in the SCC12 cell line, which has high invasive potential compared with the SCC13 cell line. The effects of NNMT knockdown on proliferation, migration and invasion were investigated using SCC cells. shRNA-mediated downregulation of NNMT expression levels inhibited the proliferation and density-dependent growth of SCC12 cells. In addition, the results of a cell motility assay showed that the migration and invasion of SCC cells were markedly decreased in NNMT-knockdown cells. The assessment of epithelial-mesenchymal transition (EMT)-associated gene expression using PCR array analysis revealed that high NNMT expression levels were accompanied by high expression levels of EMT-associated genes, and that NNMT knockdown effectively suppressed the expression of matrix metalloproteinase 9, osteopontin, versican core protein and zinc finger protein SNAI2 in SCC12 cells. These results revealed that the upregulation of NNMT induced cellular invasion via EMT-related gene expression in SCC cells.

The Association Between Dietary Diversity Score and Cardiovascular Risk Factors Among Patients With Pemphigus Vulgaris: A Cross Sectional Study

  • Atefeh Seifollahi;Mahboubeh Rezaei Fazl;Leila Setayesh;Mohammad Hassan Javanbakht;Maryam Daneshpazhooh;Sakineh Shab-Bidar;Mehdi Yaseri
    • Clinical Nutrition Research
    • /
    • v.11 no.4
    • /
    • pp.289-301
    • /
    • 2022
  • This study was conducted to evaluate the associations between dietary diversity score (DDS) and cardiovascular risk factors in this population. In this cross-sectional study, 187 patients, aged 18-65 years with pemphigus vulgaris were included. DDS was assessed by a 24-hour dietary recall method. Anthropometric measures and biochemical parameters assessed according to standard protocols. Multivariate linear regression analyses used for detecting any associations between DDS and cardiovascular risk factors. The mean ± standard deviation age and body mass index of studied participants were (46.71 ± 11.49 years) and (27.83 ± 4.39 kg/m2) respectively. Our findings showed that a higher DDS intake was related with higher consumption of vegetables (p = 0.001), dairy products (p < 0.001), cereals (p = 0.002), red and processed meat (p < 0.001), sweets and desserts (p < 0.001). After controlling for confounding variables, the results showed positive associations between DDS and high-density lipoprotein cholesterol (HDL-C, β = 1.87, 95% confidence interval [CI], 0.30-3.45, p = 0.02) and total cholesterol (TC) levels (β = 6.41, 95% CI, 1.62-11.03, p = 0.02) (β = 1.75, 95% CI, 0.20-3.30, p = 0.02). However, there were no associations between DDS and prevalence of obesity and glucose homeostasis. The results of this cross-sectional study showed that DDS might be associated with increased HDL-C and TC. However, further prospective studies are needed to prove these findings.

Artificial Neural Network-based Prediction Model to Minimize Dust Emission in the Machining Process

  • Hilal Singer;Abdullah C. Ilce;Yunus E. Senel;Erol Burdurlu
    • Safety and Health at Work
    • /
    • v.15 no.3
    • /
    • pp.317-326
    • /
    • 2024
  • Background: Dust generated during various wood-related activities, such as cutting, sanding, or processing wood materials, can pose significant health and environmental risks due to its potential to cause respiratory problems and contribute to air pollution. Understanding the factors influencing dust emission is important for devising effective mitigation strategies, ensuring a safer working environment, and minimizing environmental impact. This study focuses on developing an artificial neural network (ANN) model to predict dust emission values in the machining of black poplar (Populus nigra L.), oriental beech (Fagus orientalis L.), and medium-density fiberboards. Methods: The multilayer feed-forward ANN model is developed using a customized application built with MATLAB code. The inputs to the ANN model include material type, cutting width, number of blades, and cutting depth, whereas the output is the dust emission. Model performance is assessed through graphical and statistical comparisons. Results: The results reveal that the developed ANN model can provide adequate predictions for dust emission with an acceptable level of accuracy. Through the implementation of the ANN model, the study predicts intermediate dust emission values for different cutting widths and cutting depths, which are not considered in the experimental work. It is observed that dust emission tends to decrease with reductions in cutting width and cutting depth. Conclusion: This study introduces an alternative approach to optimize machining-process conditions for minimizing dust emissions. The findings of this research will assist industries in obtaining dust emission values without the need for additional experimental activities, thereby reducing experimental time and costs.

Carbon stocks of Humbo Farmer Managed Natural Regeneration forest along altitudinal gradients, Southern Ethiopia

  • Wondimagegn Amanuel;Chala Tadesse;Moges Molla;Musse Tesfaye;Zenebe Mekonnen;Fantaw Yimer
    • Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.382-394
    • /
    • 2024
  • Background: Humbo Farmer Managed Natural Regeneration (FMNR) forest is managed through direct involvement of the local community and funded by the World Vision Australia through World Vision Ethiopia under framework of the Kyoto Protocol's Clean Development Mechanism on greenhouse gas emissions. Understanding the amount and distribution of carbon stored in forests across different elevations will enhance ability to anticipate how forests will react to future climate conditions and carbon levels. The aim of the study was to quantify the amount of carbon stocks along altitudinal gradients in the Humbo FMNR forest in southern Ethiopia. A total of 54 nested sample plots of 20 m × 20 m were established on transects of elevation gradients. Inventories of woody species and soil samples (0-10 cm and 10-20 cm depth) were collected within each nested sample plot. Carbon stocks in woody biomass and soil were compared by three elevation classes. Results: The total carbon stocks significantly (p < 0.05) differed among the three altitudinal gradients. There is no significant difference in biomass carbon stocks between the middle (1,610-1,750 m above sea level [a.s.l.]) and lower (1,470-1,610 m a.s.l.) elevations. However, both of these elevations significantly differ (p < 0.05) from the higher (1,750-1,890 m a.s.l.) elevation, despite an increase in carbon stocks from lower to higher elevations. The highest ecosystem carbon stock was contributed by soil carbon. The higher proportion of C stocks at the higher elevations may be associated to the species composition and dominance with larger wood density. Conclusions: It was concluded that even though soil carbon contributed higher carbon to the total carbon stock, biomass is stronger impact than soil carbon when it comes to carbon stock variation by altitudinal gradients. We recommend that carbon-related awareness creation on reducing emission for the local people and promotion of knowledge on carbon stock credits accounting and to be claimed in future for financing, which could be considered as additional possible option for sustainable forest management.

Thermal-hydraulic phenomena and heat removal performance of a passive containment cooling system according to exit loss coefficient

  • Sun Taek Lim;Koung Moon Kim;Jun-young Kang;Taewan Kim;Dong-Wook Jerng;Ho Seon Ahn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4077-4086
    • /
    • 2024
  • The natural circulation system has been widely studied for use in various applications because of its inherent advantage. However, it has a key weakness called flow instability that makes the system unstable. Through massive previous research, the mechanisms of flow instability were analyzed, but there was an ambiguous aspect related to the effect of experimental parameters on the phenomenon. Particularly, there has been no report on the heat transfer performance of the system when flow instability phenomena were present. In this study, thermal-hydraulic phenomena of a two-phase natural circulation system that functions as a passive containment cooling system (PCCS) was investigated according to experimental parameters, namely, the temperature boundary (120-158 ℃) and exit loss coefficient (0-34.5) under atmospheric pressure conditions. The experimental results showed five different flow types in the loop. The flow modes that occurred by the interaction between flashing and boiling were classified by referring to the mass flow rate, void fraction, and visualization data. The system was more unstable when the temperature boundary conditions increased, but it was more stable when the exit loss coefficient increased. These results have only been confirmed in our research. The reason for the results is that the flow conditions are located on the boundary between Density Wave Oscillation I and the stable flow region, and that boundary does not have clear criteria. In addition, comparing the heat transfer performance of a system by heat rate can confirm the effect of flow instability on the thermal performance of the passive cooling system. As a result, the high exit loss coefficient stabilizes the system better than the low case and has similar heat removal performance.

Structural Characteristics and Physical Properties of Wild Silk Fibres; Antheraea pernyi and Antheraea yamamai (야잠사의 구조특성 및 물리적 성질)

  • 권해용;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.138-146
    • /
    • 1994
  • The structural characteristics of Antheraea yamamai and Antheraea pernyi silk were investigated by using x-ray diffraction method, IR spectroscopy and polarizing microscopy. The amino acid composition, fiber density, thermal decomposition temperature and glass transition temperature were also measured for relating these physical properties to the structure in comparison with those of Bombyx mori silk fiber. There was no significant structural difference between A. yamamai and A. pernyi silk fiber on an examination of x-ray diffraction curve and IR spectrum. Both of these wild silk fibers showed double diffraction peaks at the Bragg angle 2Θ16.7˚ and 20.5˚by x-ray diffraction analysis as well as IR absorption peaks for the bending vibration of specific groups related to ala-ala amino acid sequence. On the other hand, the x-ray diffraction curve and IR spectrum of Bombyx mori silk fiber are different from those of wild silk fibers, indicating different crystal structure as well as amino acid sequences. It showed under the polarizing microscope examination that the birefringence and optical orientation factor of wild silk fibers are much lower than those of B. mori silk. Also, the surface of degummed wild silk fibers was characterized by the longitudinal stripes of microfibrils in the direction of fiber axies. The amino acid composition, which is strongly related to the fine structure and properties, was not significantly different between these two wild silk fibers. However, the alanine content was somewhat less and polar amino acid content more for A. yamamai. As a result of fiber density measurement, the specific gravities of B. mori, A. pernyi and A. yamamai were 1.355~1.356, 1.308~1.311, 1.265~1.301g/㎤ in the order, respectively. The calculated crystallinity(%) was 64% for B. mori and 51~52% for wild silk fibers, which showed same trend by IR method in spite of somewhat higher value. The thermal decomposition behaviour was examined by DSC and TGA, showing that the degradation temperature was in the order of B mori, A. prernyi and A. yamamai at around 350$^{\circ}C$. It was also observed by TGA that the decomposition seems to proceed step by step according to their specific regions in the fiber structure, resulting the difference in their thermal stabilities. The glass transition temperature was turned out to be 220$^{\circ}C$ for B. mori, 240$^{\circ}C$ A. yamamai and 255$^{\circ}C$ A. pernyi by the dynamic mechanical analysis. It is expected that the chemical properties are affected by the dynamic mechanical behavior in accordance with their structural characters.

  • PDF

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF

Annual Occurrent Pattern of Scirtothrips dorsalis (Thysanoptera: Thripidae) on Citrus Trees and Surrounding Host Plants (감귤원과 그 주변 기주식물에서 볼록총채벌레의 연중발생 양상)

  • Song, Jeong Heub;Kim, Chang Seog;Yang, Young Taek;Hong, Soon Yeong;Lee, Shin Chan
    • Korean journal of applied entomology
    • /
    • v.52 no.3
    • /
    • pp.185-191
    • /
    • 2013
  • The damage of citrus by Scirtothrips dorsalis Hood appears to have increased since 2007 in Jeju, although the characteristics of seasonal abundance are not clear. This study was conducted to investigate the relationship between host plants and the seasonal abundance of S. dorsalis, observing plants distributed around citrus orchards. The host plants of S. dorsalis surrounding citrus orchards were determined to include 32 families, 54 species: 39 woody plant species and 15 herbaceous plant species. The host plants which related to the occurrence of 1st generation of S. dorsalis were Lonicera japonica, Clematis apiifolia, Hedera rhombea, and Viburnum awabuki. The occurrence of 1st generation S. dorsalis was estimated to be due to overwintered female adults having laid eggs into those plants from late March to early April, and the new adults having emerged from late April to late May. The host plants which were associated with fruit damage of citrus were Mallotus japonicus, and Camellia japonica, as well as creeping plants such as Clematis apiifolia, Paederia scandens and Cayratia japonica. The adult phase density of S. dorsalis caught on yellow-color sticky traps placed on the citrus trees on the edge of the citrus orchard. S. dorsalis were predominantly 3rd generation from late of June to early of July, and 6th generation from late of August to early of September, and their numbers were directly related to the degree of damage caused to the citrus fruit. The density of S. dorsalis depended on the number of new growing shoots of host plants, which indicated that the immigration of adults of S. dorsalis to the citrus was based in the suitability of host plants surrounding the orchards.

Optimization of Processing Conditions for the Production of Puffed Rice (팽화미 제조 공정조건의 최적화)

  • Cheon, Hee Soon;Cho, Won Il;Jhin, Changho;Back, Kyeong Hwan;Ryu, Kyung Heon;Lim, Su Youn;Chung, Myong Soo;Choi, Jun Bong;Lim, Taehwan;Hwang, Keum Taek
    • Culinary science and hospitality research
    • /
    • v.21 no.1
    • /
    • pp.77-89
    • /
    • 2015
  • The objective of this study was to optimize processing conditions for the production of an instant puffed rice product using response surface methodology (RSM) and contour analysis. Sensory and texture qualities, and physical properties of the puffed rice were analyzed with various processing conditions related to drying and puffing temperature, and moisture content. Preference, color intensity, cohesiveness, rehydration ratio, density and lightness of the puffed rice product significantly varied depending on the processing conditions. The responses showed high $R^2$ values (0.623, 0.852, 0.735, 0.688, and 0.790) and lack-of-fit. Rehydration ratio was found to have a negative correlation with density in the condition of drying and puffing temperature. Lightness and preference scores of the puffed rice increased as the moisture content increased. According to RSM, the preference scores were very highly related to the moisture content, and the optimum processing conditions of the puffed rice product were at $40^{\circ}C$ of drying temperature, with 11.0% of moisture content, and at $232.7^{\circ}C$ of puffing temperature.