• Title/Summary/Keyword: reinforcements' corrosion

Search Result 53, Processing Time 0.02 seconds

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

Study on Shearing Properties and Behavior of the Grout-reinforced Underground with ERP Pipes (FRP 그라우팅 보강지반의 전단특성에 관한 연구)

  • 최용기;박종호;권오엽;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.73-81
    • /
    • 2002
  • Nowadays , the grouted-reinforcing method, which is called FRP(Fiberglass-reinforced-plastic) pipe .reinforcing method, has been introduced in the community of pound reinforcements. The resistance to corrosion and chemical attack high strength to weight ratio, and ease of handling make these pipes a better alternative to steels in tunnel. However, to fully utilize FRP pipes as grouted reinforcing members at the face and the crown in tunnel, their mechanical properties and behaviors and the grout-reinforced underground have to be verified. Laboratory shear tests were conducted to evaluate the mechanical properties for FRP pipes, the grout-reinforced members and the grout-reinforced body of FRP pipes. According to the test results, it was observed that FRP pipes play a dominant role in shearing behavior of the grout-reinforced members and that their shearing resistance exerts after the shearing displacement increases to some extent.

A Case Study of Ground Subsidence in a Groundwater-saturated Limestone Mine (지하수로 포화된 석회석광산의 지반침하 사례연구)

  • Choi, Woo-Seok;Kim, Eun-Sup;Kang, Byung-Chun;Shin, Dong-Choon;Kim, Soo-Lo;Baek, Seung-Han
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.511-524
    • /
    • 2015
  • Groundwater causing subsidence in limestone mines is uncommon, and thus relatively poorly investigated. This case study investigated the cause and possibility of future subsidence through an evaluation of ground stability at the Samsung limestone mine, Chungcheongbuk-do. The ground near the mine area was evaluated as unstable due to rainfall permeation, and subsidence in the unmined area resulted from groundwater level drawdown. Future subsidence might occur through the diffusion of subsidence resulting from the small thickness of the mined rock roof, fracture rock joints, and poor ground conditions around the mine. In addition, the risk of additional subsidence by limestone sinkage in corrosion cavities, groundwater level drawdown due to artificial pumping, and rainfall permeation in the limestone zone necessitates reinforcements and other preventative measures.