• Title/Summary/Keyword: reinforcements' corrosion

Search Result 53, Processing Time 0.027 seconds

Behavior According to Confinement of Compressive Concrete on Flexural Members Reinforced with FRP Bars (FRP bar를 주근으로 사용한 콘크리트 휨부재의 압축측 콘크리트 구속에 따른 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.110-118
    • /
    • 2008
  • The use of FRP bar as reinforced concrete beams is considered as one of the most prominent solution that may overcome the corrosion of reinforcing steel bars. However, in the case of FRP reinforced concrete, both the reinforcing and the reinforced materials are brittle. For this reason, ductility of structures with FRP reinforcement is much less than that of structures with steel reinforcements. In this study, a method has been suggested to provide a meaningful quantification of ductility for concrete beams reinforced with FRP bars. This paper shows which the confinement to the compression concrete by the spiral can increase the ductility of FRP over-reinforced concrete beams.

The Monitoring System Using Multi Antenna GPS for Weak Slope (Multi Antenna GPS를 이용한 취약사면 상시모니터링 시스템)

  • Noh, Won-Seok;Kim, Wan-Jong;Jang, Hyun-Ick;Kim, Hak-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.677-694
    • /
    • 2009
  • While the budget has been allocated more for repairs and reinforcements, casualties are gradually increased due to slope disaster. Slope disaster causes road damaged as well as casualties. It also causes significant social and economic loss. The measurement device, which is installed inside ground of slope like inclinometer, has the high loss rate when slope is being slided. The electric type and the vibrating wire type have low durability because of corrosion. To cover the demerit of the present slope monitoring, the measurement method using the Multi-Antenna GPS has been developed. The Multi-Antenna GPS has been installed in the local slope as the regular monitoring system for slope. Although the initial cost of the Multi-Antenna GPS for installation is high, the additional cost is low. So it is the suitable method for large slope. The regular monitoring system using the Multi-Antenna GPS is the suitable measurement method for watching slope collapse, which is occurred widely, because it is economical, has high durability, and collects data with high resolution.

  • PDF

Fabrication and Performance Evaluation of Carbon Fiber/Graphene Nano-Platelets Composites for Wear Resistance Application (GNP 첨가 탄소복합재료의 제조 및 마모 특성 평가)

  • Park, Seung-Bhin;Park, Jin-Chul;Cho, Chang-Woo;Song, Jung-Il
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.531-536
    • /
    • 2015
  • GNPs have several excellent mechanical properties including high strength, a good young's modulus, thermal conductivity, corrosion resistance, electronic shielding, etc. In this study, CF/GNP/Epoxy composites were manufactured using GNP weight ratios of 0.15 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt% and 1 wt%. The composites were manufactured with a mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D3039, D256 and D3181, respectively. The results show that the CF/GNP0.3wt%/Epoxy composites have good mechanical properties, e.g., tensile strength and impact and wear resistance. In this study, both carbon fabric and GNPs were used as reinforcements in the composites. The mechanical properties increased and weight loss decreased as the GNP content in the resin films was increased.

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

Experimental Study on the Effects of Mineral Admixtures on the Fluidity and Strength Characteristics of High-Performance Concrete (고성능 콘크리트의 유동성 및 강도에 대한 혼화재의 영향에 관한 실험연구)

  • Oh, Byung Hwan;Um, Joo Yong;Lim, Dong Hwan;Park, Sang Hyun;Cha, Soo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.783-794
    • /
    • 1994
  • Recently, several failure cases of concrete structures during construction have been reported. The main reason for these failures is attributed to the poor quality of concrete during construction. It is, therefore. necessary to develop and use high quality concrete. The purpose of the present study is to explore the characteristics of superplasticized concrete, especially the effects of mineral admixtures on the fluidity and strength characteristics of high performance concrete. The mineral admixtures considered in the present study are fly ash, blast furnace slag and silica fume, respectively. The major test variables include the amount of these mineral admixtures, cement contents and water-cement ratios. The compressive strengths for various cases were measured and reported. Optimum contents of mineral admixtures for strength development were derived. The corrosion phenomena of reinforcements embedded in various concrete specimens have been also studied. The present study provides useful basis to apply high-performance concrete to actual structures.

  • PDF

Performance Evaluation of Recycled Aggregate Concrete Block Reinforced with GFRP (GFRP로 보강된 순환골재콘크리트 블록의 성능평가)

  • Kim, Yongjae;Lee, Hyeongi;Park, Cheolwoo;Sim, Jongsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6565-6574
    • /
    • 2013
  • Precast concrete blocks are used mainly for score protection, slope protection and riverbed structure protection, etc. Because these concrete blocks are exposed to water or wetting environments, the steel rebar used as reinforcements in concrete blocks can corrode easily. Corrosion of the steel rebar tends to reduce the performance and service life of the concrete blocks. In this study, Glass Fiber Reinforced Polymer(GFRP) rebar, which does not corrode, was applied instead of a steel rebar to prevent performance degradation of the blocks. Recycled concrete aggregate and high early strength cement(HESC) were used in the concrete mix for field applicability. The experiment results showed that the workability and form removal strength of the recycled aggregate concrete using HESC showed comparable results to normal concrete and the compressive strength at 28 days increased by about 18% compared to normal concrete. The load resistance capacity of the recycled aggregate concrete blocks reinforced with a GFRP rebar increased by approximately 10~30% compared to common concrete block.

Influence of Reinforcements on the Chloride Diffusion Analysis of Concrete Structures (철근의 영향을 고려한 콘크리트 구조물의 염소이온 확산해석)

  • 오병환;장봉석;이명규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.883-891
    • /
    • 2002
  • The chloride penetration in concrete structures is influenced by many factors such as types of cement and admixture proportion. Therefore, the effects of these factors on chloride diffusion must be correctly considered. The conventional diffusion analysis also neglected the existence of reinforcing bar in concrete structures. The purpose of the present paper is therefore to investigate the effect of reinforcing bar on the chloride diffusion in concrete structures. For this purpose, a comprehensive finite element analyses have been conducted to obtain chloride penetration profile. The results indicate that the chlorides are accumulated in front of a reinforcing bar and that the accumulation is much larger for the case of large diameter bars. The higher accumulation of chloride at bar location causes much faster corrosion of reinforcing steel. It can be concluded from the present study that the effects of reinforcing bars must be considered in chloride diffusion analysis for more realistic prediction of durable life of concrete structures.