• Title/Summary/Keyword: reinforcement strain

Search Result 616, Processing Time 0.028 seconds

Dynamic behavior of cracked ceramic reinforced aluminum composite beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.387-393
    • /
    • 2022
  • This paper presents the vibration analysis of cracked ceramic-reinforced aluminum composite beams by using a method based on changes in modal strain energy. The crack is considered to be straight. The effective properties of composite materials of the beams are estimated through Mori-Tanaka micromechanical model. Comparison study and numerical simulations with various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. Results demonstrate the pronounced effects of these parameters on intact and cracked ceramic aluminum beams.

Confinement of Columns using Headed Bars (Headed Bars를 활용한 기둥의 구속효과에 대한 연구)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

Nonlinear Dynamic Properties of Fiber Reinforced Soils (섬유혼합토의 비선형 동적물성치)

  • 박철수;황선근;목영진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2003
  • In this paper, deformation characteristics of fiber-mixed-soils were studied at small strain range(0.0001%~1%) using resonant column test and triaxial test, and reinforcement effect was evaluated by the measure of maximum shear moduli. The effects of the major parameters such as fiber content, aspect ratio and fiber type on reinforcement were comparatively assessed. The specimens were remolded from Jumunjin Sand randomly mixed with discrete polypropylene staple fibers. Maximum shear moduli of fiber-mixed-soils increased by up to 30% and modulus reduction was also restrained in nonlinear range. Shear moduli increased as the aspect ratio increases. The reinforcement was more effective with fibrillated fiber than with monofilament fiber. The most effective reinforcement was achieved with the specimen of 0.3 % fiber content.

Prediction of Shear Strength of R/C Beams using Modified Compression Field Theory and ACI Code

  • Park, Sang-Yeol
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.5-17
    • /
    • 1999
  • In recent years. the concept of the modified compression field theory (MCFT) was develped and applied to the analysis of reinforced concrete beams subjected to shear, moment, and axial load. Although too complex for regular use in the shear design or beams. the procedure has value in its ability to provide a rational method of anlysis and design for reinforced concrete members. The objective of this paper is to review the MCFT and apply it for the prediction of the response and shear strength of reinforced concrete beams A Parametric analysis was Performed on a reinforced T-section concrete beam to evaluate and compare the effects of concrete strength. longitudinal reinforcement ratio shear reinforcement ratio, and shear span to depth ratio in two different approaches the MCFT and the ACI code. The analytical study showed that the concrete contribution to shear strength by the MCFT was higher than the one by the ACI code in beams without stirrups, while it was lower with stirrups. On the other hand. shear reinforcement contribution predicted by the MCFT was much higher than the one by the ACI code. This is because the inclination angle of shear crack is much smaller than 45$^{\circ}$assumed in the ACI code.

  • PDF

Compressive behavior of steel stirrups-confined square Engineered Cementitious Composite (ECC) columns

  • Zheng, Pan-deng;Guo, Zi-xiong;Hou, Wei;Lin, Guan
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.193-206
    • /
    • 2021
  • Extensive research has been conducted on the basic mechanical property and structural applications of engineered cementitious composites (ECC). Despite the high tensile ductility and high toughness of ECC, transverse steel reinforcement is still necessary to confine ECC for high performance. However, limited research has examined performance of ECC confined with practical amount of transverse reinforcement. This paper presents the results of axial compression tests on 14 square ECC columns and 4 conventional concrete columns (used as control specimens) with transverse reinforcement. The test variables were spacing, configuration (square ties or square and diamond shape ties), and yield strength of stirrups. The test showed that ECC columns confined with steel stirrup had good compressive ductility, and the stirrup spacing had the greatest effect on the compressive performance. The self-confinement effect of ECC results in a more uniform but slower expansion of the whole column compared with CC ones. The test results are then compared against the predictions from a number of existing models for conventional confined concrete. It is indicated that these models fail to predict the axial strains at peak axial stress and the trend of the stress-strain curve of steel stirrups-confined ECC with sufficient accuracy. Several new equations are then proposed for the compressive properties of steel-confined ECC based on test results and potential approaches for future studies are proposed.

Evaluation of Structural Performance of RC T-shaped Walls with Different ratios of axial load and vertical reinforcement (압축력비와 수직철근비에 따른 RC T형 벽체의 구조성능 평가에 관한 해석적 연구)

  • 하상수;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.403-408
    • /
    • 2003
  • The objective of this study is to understand the variables affected the confinement for the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The structural performance of T-shaped walls was advanced by the transverse reinforcement which restrained the concrete subjected to compressive stress. If the arrangement of transverse reinforcement was not suitable for the confinement, T-shaped walls happened the brittle failure by web crushing or bucking of vertical reinforcement at the compression zone. It is necessary to confine transverse reinforcement in order to prevent the these failure. But the location of neutral axis and the magnitude of ultimate strain vary according to the section shape, a ratio of axial load, a ratio of wall cross sectional area to the floor-plan area, an aspect ratio and the reinforcement ratio. Therefore, the objective of this research is to grasp the location of neutral axis and the range which needs for the confinement of transverse reinforcement through the results of the sectional analysis which varies the ratio of axial load and the ratio of vertical reinforcement.

  • PDF

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

Stress-Strain Behavior of Flexible Pavement Reinforced with Geosynthetics (토목섬유로 보강된 아스팔트포장의 응력-변형 거동특성)

  • Ahn, Tae-Bong;Yang, Sung-Chul;Cho, Sam-Deok;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.151-163
    • /
    • 2001
  • Very few studies have been attempted to understand the stress-strain behavior of flexible pavements reinforced with geosynthetics in the middle of asphalt layer. In this study, the flexible asphalt layer was analyzed with finite element method to understand stress-strain behavior. The asphalt layer was reinforced with glass grid and geogrid. The reinforcement was applied in the asphalt layer to prevent its excessive deformation and shear failure. The location of installation and stiffness of the geosynthetics were varied to obtain optimum depth of reinforcement and proper modulus. The results indicate that geosynthetics are more effective for reducing maximum shear stress than those of vertical stress and vertical displacement. Maximum shear stress decreased 15$\sim$20%, and glass grid with high value of modulus was the most effective. Also, in order to prevent failure of asphalt layer, reinforcement should be installed in the 3cm$\sim$5cm depth.

  • PDF

Experimental Study on Structural Performance of Recycled Coarse Aggregate Concrete Confined by Steel Spirals (나선철근으로 횡구속된 순환골재 콘크리트의 구조적 성능에 관한 실험적 연구)

  • Kim, Sang Woo;Jung, Chang Kyo;Lee, Sun Hee;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • This paper estimated the structural behavior of recycled aggregate concrete confined with spiral reinforcement. The main test parameter was designed to be the type of aggregates and the steel ratio of spirals. A total of 18 specimens were cast and tested in this study. All the specimens had a diameter of 150mm and a height of 300mm. The specimens can be divided into two groups, based on the type of coarse aggregate used. The ratio of spiral reinforcement was varied from 0 % to 1.75%. To measure the axial and lateral deformations of the specimens, a total of six linear variation displacement transducers (LVDTs) were installed at each specimen. Furthermore strain gauges were also attached to the steel spirals to obtain the strain of spiral reinforcements. From the experimental results, the structural performance of recycled aggregate concrete specimens confined by steel spirals was similar to that of natural aggregate concrete specimens regardless of the ratio of spiral reinforcement.

Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement (보강용 지오신세틱스의 가속 인장 크리프 시험방법)

  • Koo, Hyun-Jin;Cho, Hang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF