• 제목/요약/키워드: reinforcement strain

검색결과 616건 처리시간 0.024초

A constitutive model for concrete confined by steel reinforcement and carbon fiber reinforced plastic sheet

  • Li, Yeou-Fong;Fang, Tsang-Sheng
    • Structural Engineering and Mechanics
    • /
    • 제18권1호
    • /
    • pp.21-40
    • /
    • 2004
  • In this paper, we modify the L-L model (Li et al. 2003) and extend the application of this model to concrete confined by both steel reinforcement and CFRP. Thirty-six concrete cylinders with a dimension of ${\varphi}30{\times}60$ cm were tested to verify the effectiveness of the proposed model. The experimental test results show that different types of steel reinforcement have a great effect on the compressive strength of concrete cylinders confined by steel reinforcement, but the different types of steel reinforcement have very little effect on concrete cylinders confined by both steel reinforcement and CFRP. Compared with the stress-strain curves of confined concrete cylinders, we can conclude that the proposed model can provide more effective prediction than others models.

Test study on the impact resistance of steel fiber reinforced full light-weight concrete beams

  • Yang, Yanmin;Wang, Yunke;Chen, Yu;Zhang, Binlin
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.567-575
    • /
    • 2019
  • In order to investigate the dynamic impact resistance of steel fiber reinforced full light-weight concretes, we implemented drop weight impact test on a total of 6 reinforced beams with 0, 1 and 2%, steel fiber volume fraction. The purpose of this test was to determine the failure modes of beams under different impact energies. Then, we compared and analyzed the time-history curves of impact force, midspan displacement and reinforcement strain. The obtained results indicated that the deformations of samples and their steel fibers were proportional to impact energy, impact force, and impact time. Within reasonable ranges of parameter values, the effects of impact size and impact time were similar for all volumetric contents of steel fibers, but they significantly affected the crack propagation mechanism and damage characteristics of samples. Increase of the volumetric contents of steel fibers not only effectively reduced the midspan displacement and reinforcement strain of concrete samples, but also inhibited crack initiation and propagation such that cracks were concentrated in the midspan areas of beams and the frequency of cracks at supports was reduced. As a result, the tensile strength and impact resistance of full light-weight concrete beams were significantly improved.

에폭시기지 복합재료의 충격파괴인성에 관한 연구 (A Study on the Impact Fracture Toughness of Epoxy Matrix Composites)

  • 김재동;전진탁;고성위
    • 수산해양교육연구
    • /
    • 제9권2호
    • /
    • pp.188-197
    • /
    • 1997
  • The fracture toughness of three different kinds of epoxy-matrix composites containing the same volume fraction of reinforcement and the variation of fracture toughness of glass-carbon fiber/epoxy hybrid composites due to the change of test temperature and different glass fiber content were investigated in this study. Glass fiber/epoxy composite provided much higher fracture toughness than that of other composites because of the high strain at failure of glass fiber. Particularly the carbon fiber/epoxy composite exhibited the low fracture toughness caused by the low strain energy absorbing capacity of carbon fiber. And it was found that the strain at failure of reinforcement and interfacial delamination absorbing a significant amount of impact energy played an important role to increase fracture toughness of composites. The fracture toughness of the glass-carbon fiber hybrid composites increased with increasing the glass fiber content and decreased with raising the test temperature. The residual stress arising from the different thermal expansion between the matrix and reinforcement influenced the fracture toughness of composites.

  • PDF

Reinforced concrete beams under drop-weight impact loads

  • May, Ian M.;Chen, Yi;Owen, D. Roger J.;Feng, Y.T.;Thiele, Philip J.
    • Computers and Concrete
    • /
    • 제3권2_3호
    • /
    • pp.79-90
    • /
    • 2006
  • This paper describes the results of an investigation into high mass-low velocity impact behaviour of reinforced concrete beams. Tests have been conducted on fifteen 2.7 m or 1.5 m span beams under drop-weight loads. A high-speed video camera has been used at rates of up to 4,500 frames per second in order to record the crack formation, propagation, particle spallation and scabbing. In some tests the strain in the reinforcement has been recorded using "Durham" strain gauged bars, a technique developed by Scott and Marchand (2000) in which the strain gauges are embedded in the bars, so that the strains in the reinforcement can be recorded without affecting the bond between the concrete and the reinforcement. The impact force acting on the beams has been measured using a load cell placed within the impactor. A high-speed data logging system has been used to record the impact load, strains, accelerations, etc., so that time histories can be obtained. This research has led to the development of computational techniques based on combined continuum/discontinuum methods (finite/discrete element methods) to permit the simulation of impact loaded reinforced concrete beams. The implementation has been within the software package ELFEN (2004). Beams, similar to those tested, have been analysed using ELFEN a good agreement has been obtained for both the load-time histories and the crack patterns.

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

단나선근으로 횡보강된 콘크리트의 횡보강효과 (An experimental Study on the Confinement Effect of Concrete specimens confined by Single Spirals)

  • 김진근;박찬규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.301-305
    • /
    • 1994
  • Experimental research was carried out to investigate the confinement effect of concrete specimens confined by single spirals subjected to the concentric axial compressive load. Main variables are the compressive strength of concrete, the spacing of the spiral reinforcement and the yield strength of the spiral reinforcement. Axial stress-strain curves are reported.

  • PDF

콘크리트의 극한변형률 수정모델 (Modified model of ultimate concrete compression strain)

  • 고성현;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.81-84
    • /
    • 2008
  • The purposes of this study are to verify a reasonable model of material characteristic and to propose a rational model of reinforcement characteristic considering monotonic and cyclic loading about manufactured reinforcing steel in Korea. Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. The tests for cyclic tension loading were performed for test variable as yield strength and reinforcement bar sizes. It was estimated that the total strain energy per unit volume was 74 $MJ/m^3$. The modified ultimate concrete compression strain model was proposed based on experimental study of cyclic tension test for manufactured reinforcing steel in Korea.

  • PDF

Review of the reinforcement sizing in the strength design of reinforced concrete slabs

  • Gil-Martina, Luisa Maria;Hernandez-Montes, Enrique
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.211-223
    • /
    • 2021
  • This paper presents a review of the two widespread approaches which deal with the ultimate strength design of RC slabs subjected to bending moments and torsion: The Field of Moments Method (FoMM) and the Sandwich method (SM). Special attention is paid to the ultimate strain distribution implicitly assumed when using each one of the methodologies, in particular, the yielding of the steel reinforcement. This work analyzes the initial assumption regarding ultimate strain distribution in the SM. Furthermore, this work studies the resisting moments field on which the Wood-Armer method is based, and it finds some inconsistencies. Several examples have been developed.

다양한 지오그리드의 인장강도-인장변형 관계 특성 (Tensile Strength-Strain Relationship of Various Geogrids)

  • 한상현;여규권;이광우
    • 한국지반환경공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.83-93
    • /
    • 2012
  • 보강토옹벽은 1980년대 초반 국내에 도입된 이래로, 다양한 금속 혹은 토목섬유 보강재가 개발되어 현장에 적용되고 있으며, 특히, 국내에서는 지오그리드가 가장 많이 적용되고 있다. 이에 본 연구에서는 현재 국내에서 생산되고 있는 4가지 종류의 지오그리드에 대해 인장강도-인장변형 관계 특성을 고찰하였다. 또한 재질 및 제조방식이 상이한 3가지 지오그리드에 대해서는 일련의 광폭인장강도시험을 수행하여 실제 지오그리드 인장변형과 변형률계에 의해 측정된 인장변형을 비교하였다. 실험결과, 변형률계에 의해 측정된 인장변형률이 광폭인장강도시험기에 의해 측정된 실제변형률 보다 다소 큰 경향을 보이나 인장변형률이 3% 보다 작은 경우에는 측정방법에 따른 차이가 거의 없는 것으로 확인되었다.

콘크리트 원주공시체에서 나선철근량과 중공크기에 관한 연구 (Effect of spiral reinforcement ratio and center-hole size of cylinder of concrete)

  • 김민수;김진근;유영섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.101-106
    • /
    • 2001
  • This paper presents experimental results for the confining characteristics of cylinder with center-hole and spiral reinforcements. The experiments have been conducted for the specimens with primary variables i.e., spiral reinforcement ratio and diameter of center-hole which affect the compressive strength and stress-strain relationship. Through this research, it was found that the compressive strength and ductility were increased with the ratio of spiral reinforcement because the lateral expansion of the concrete inside the spiral was restrained by the spiral, but dependent on the size of center-hole.

  • PDF