• 제목/요약/키워드: reinforcement materials

검색결과 1,079건 처리시간 0.023초

Experimental study on nano silica modified cement base grouting reinforcement materials

  • Zhou, Fei;Sun, Wenbin;Shao, Jianli;Kong, Lingjun;Geng, Xueyu
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.67-73
    • /
    • 2020
  • With the increasing number of underground projects, the problem of rock-water coupling catastrophe has increasingly become the focus of safety. Grouting reinforcement is gradually applied in subway, tunnel, bridge reinforcement, coal mine floor and other construction projects. At present, cement-based grouting materials are easy to shrink and have low strength after solidification. In order to overcome the special problems of high water pressure and high in-situ stress in deep part and improve the reinforcement effect. In view of the mining conditions of deep surrounding rock, a new type of cement-based reinforcement material was developed. We analyses the principle and main indexes of floor strengthening, and tests and optimizes the indexes and proportions of the two materials through laboratory tests. Then, observes and compares the microstructures of the optimized floor strengthening materials with those of the traditional strengthening materials through scanning electron microscopy. The test results show that 42.5 Portland cement-based grouting reinforcement material has the advantages of slight expansion, anti-dry-shrinkage, high compressive strength and high density when the water-cement ratio is 0.4, the content of bentonite is 4%, and the content of Nano Silica is 2.5%. The reinforcement effect is better than other traditional grouting reinforcement materials.

돌기형 접합 보강재를 이용한 옥상 노출 복합방수의 조인트 시공방법에 관한 연구 (Sheet Jointing Method of the Roof Exposed Hybrid Waterproofing Using the Bump-type Joint Reinforcement)

  • 김명지;안기원;김동춘;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.147-148
    • /
    • 2018
  • Seat waterproofing materials applied to the roof of a building concrete structure inevitably produce joints and are applied with opposite dam joints or overlapping joints depending on the waterproof material applied to the top of the sheet. In this case, the joint performance is determined by the material at the top, rather than by the superimposed joint. In order to solve this problem, various reinforcements have been used to apply to the connecting parts of the opposite dam, but the problem of attachment between different materials or the lack of reinforcement of the joint tape has not been solved. Therefore, for the purpose of securing tensile performance to the joints, this study is used as a reinforcement for the joints of PP materials with high tensile performance and as a reinforcement for nylon materials.

  • PDF

Study on fracture characteristics of reinforced concrete wedge splitting tests

  • HU, Shaowei;XU, Aiqing;HU, Xin;YIN, Yangyang
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.337-354
    • /
    • 2016
  • To study the influence on fracture properties of reinforced concrete wedge splitting test specimens by the addition of reinforcement, and the restriction of steel bars on crack propagation, 7 groups reinforced concrete specimens of different reinforcement position and 1 group plain concrete specimens with the same size factors were designed and constructed for the tests. Based on the double-K fracture criterion and tests, fracture toughness calculation model which was suitable for reinforced concrete wedge splitting tensile specimens has been obtained. The results show that: the value of initial craking load Pini and unstable fracture load Pun decreases gradually with the distance of reinforcement away from specimens's top. Compared with plain concrete specimens, addition of steel bar can reduce the value of initial fracture toughness KIini, but significantly increase the value of the critical effective crack length ac and unstable fracture toughness KIun. For tensional concrete member, the effect of anti-cracking by reinforcement was mainly acted after cracking, the best function of preventing fracture initiation was when the steel bar was placed in the middle of the crack, and when the reinforcement was across the crack and located away from crack tip, it plays the best role in inhibiting the extension of crack.

Nylon Net(대체근계)의 토질강도보강효과에 대한 실험적 연구 - 토양수분제어하의 단순전단시험에 의한 해석 - (Experimental Study on Reinforcement Effects of Soil Shear Strength by Nylon Net(Substitute Materials Simulating a Root System) -Analysis using Simple Shear Tester under Soil Suction Control -)

  • 이창우;윤호중;정용호
    • 한국환경복원기술학회지
    • /
    • 제9권3호
    • /
    • pp.76-81
    • /
    • 2006
  • The reinforcement of soil shear strength by nylon net as substitute materials simulating a fine root system was evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\phi}$), using simple shear tester which clearly depicts shear deformation and controls soil suction. And the results of shear test by using bamboo as a substitute materials simulating a main root system and using nylon net as a substitute materials simulating a fine root system were compared. The reinforcement of soil strength by nylon net are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by nylon net reached a peak in suction 60 $cmH_2O$. Different from with bamboo, the possibility of the change on internal friction angle(tan${\phi}$) caused by the soil water condition was shown in shear strain 20% condition. These results show that the mechanism of reinforcement by substitute materials simulating root system may be different in the condition of various soil water content.

고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구 (Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement)

  • 박봉근;조국환;나경;윤태국;이용준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

전단 보강재의 보강길이에 따른 기초판의 뚫림전단 성능평가 (Punching Shear Performance Evaluation of Foundation by Enforcement-length of Shear Head Reinforcement)

  • 이용재;이원호;양원직
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권2호
    • /
    • pp.60-68
    • /
    • 2017
  • 본 연구에서는 지내력이 기초판에 미치는 영향을 충분히 고려할 수 있도록 현장여건과 동일한 옥외의 지반에서 실험할 수 있는 시스템을 구축하였으며, 대상 실험체는 경제성 및 시공성 향상을 위하여 강판을 "ㄷ"자형으로 절곡하여 단면 2차모멘트를 극대화 하고 현장조립이 가능하도록 제안 하였다. 대상 실험체는 무보강 실험체 1개, 강판 두께를 동일하게 하여 보강 길이를 달리한 실험체 3개, 강판 두께를 달리하고 위험단면 부근에 스티프너 보강한 실험체 2개 총 6개의 실험체를 대상으로 비교 검토 한다. 실험 결과 스티프너 보강에 의한 효과는 없는 것으로 나타났으며, 전단보강재의 보강길이는 확장된 위험단면에서 전단력을 지내력으로 나타낸 값과 위험단면에서 보강재가 받을 수 있는 전단내력을 지내력으로 환산여하여 두 선의 교차점을 유효보강 길이로 산정하는 강판두께별 유효보강길이 산정방법을 제안하였다.

Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials

  • Lee, Hyung-Joon
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.831-850
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures because of the benefits of the mechanical and durable properties. Generally, it is known that the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. Especially, when a reinforced concrete structure may be subjected an earthquake, the members need to have a sufficient ductility. So, each design code has specified to provide a consistent level of minimum flexural ductility in seismic design of concrete structures. Therefore, it is necessary to assess accurately the ductility of the beam sections with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of concrete strength, yield strength of reinforcement steel and amount of reinforcement including compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of doubly reinforcement concrete beam sections have been evaluated and a newly prediction formula for curvature ductility factor of doubly RC beam sections has been developed considering the stress of compression reinforcement at ultimate state. Based on the numerical analysis results, the proposed predictions for the curvature ductility factor are verified by comparisons with other prediction formulas. The proposed formula offers fairly accurate and consistent predictions for curvature ductility factor of doubly reinforced concrete beam sections.

친환경 쉬트형 보강재 및 분산성 섬유를 적용한 복합 섬유 보강 포장 개발 (Development of a Composite Fiber Reinforcement Pavement using Eco-Friendly Grid and Dispersive Fibers)

  • 박주원;김형수;김혁중;김성보
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.57-66
    • /
    • 2017
  • PURPOSES : This study develops eco-friendly asphalt reinforcement materials applicable to bridge deck pavement. The main purpose is to ensure highly reliable quality applicable to structures and the possibility of practical application. The main target of the study is to develop materials that are environmentally friendly and capable of improving performance. METHODS : The application of double-reinforcement fiber improves the performance of the road pavement. 1. We use recycled film for application of sheet-typed reinforcement. 2. We use preprocessing fibers to reinforce the properties of composite pavement materials. RESULTS : The developed products may produce materials that fit the purpose of achieving stability and environmental friendliness. Sheet-typed reinforcements use more than 50% recycled resin. The most important type of damage to the asphalt layer is deflection (plastic deformation). These products have a very high deflection resistance of not less than 6,000 cycles/mm. In addition, all performance is excellent. Thus, it will be easier to access the field in the future. CONCLUSIONS : Fiber-reinforced asphalt pavement showed excellent performance. Sheet-typed reinforcements containing 50% recycling resin produced good performance in terms of functionality as well as environmental friendliness. Thus, enhancing the field applicability will enhance the usability of the reinforcements.

보강재를 사용한 철근 콘크리트 보의 내력보강에 관한 실험적 연구 (An Experimental Study on Improved Bearing-Capacity of Reinforced Concrete Beam Using Reinforcement Materials)

  • 홍상균;박기철;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.495-500
    • /
    • 1996
  • In this paper, it is the effect of using fiber sheet (Carbon Fiber Sheet & Aramid Fiber Sheet) and Steel Plate for reinforced concrete beam, 25 specimens are tested, 16 specimens for bending capacity and the other are for shear capacity. In the case of bending testing, the kind and quantity of the reinforcement materials, the bondage and the existence of crack were selected as experimental variables. And in the case of shear testing, it is testified the effect of reinforcement with the variables of the method of reinforcement (side type and U type). As a result, using the reinforcement meterials can increase the capacity of bending stress.

  • PDF