• 제목/요약/키워드: reinforcement length

검색결과 547건 처리시간 0.026초

격자형 탄소 보강재의 일방향 부착특성에 대한 실험 및 해석적 연구 (A Experimental and Analytical Study on One directional Bond Behavior of Grid typed CFRP Reinforcement)

  • 노치훈;장낙섭;오홍섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권2호
    • /
    • pp.77-86
    • /
    • 2024
  • 본 연구에서는 콘크리트 보강재로 사용되는 철근의 대체제로써, 격자형 탄소보강재를 활용하기 위해 부착거동 특성을 파악하고자 하였다. 기존의 부착거동에 관한 수치해석 제안식에서는 격자형 탄소보강재의 횡방향 격자의 영향을 이해하기 어려운 실정으로, 비선형 3D모델을 제작하여 유한요소해석을 진행하였다. 해석 수행을 위하여 비선형 재료 모델의 입력과 격자형 탄소보강재와 콘크리트 사이의 부착계면 특성을 모델링하여 실제 직접인발시험 결과와 비교를 통하여 분석을 진행하였다. 격자형 탄소보강재의 부착거동 특성은 횡방향 격자의 요인에 매우 지배적인 것으로 나타났으며, 지속적인 하중 증가 경향을 보였다.

지오그리드 보강재의 인발거동특성 예측기법 (Prediction of Pullout Behavior Characteristics on the Geogrid)

  • 김홍택;박사원;김경모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.1-10
    • /
    • 1999
  • In the present study, laboratory pull-out tests with various geogrid shapes are carried out to investigate behavior characteristics of the geogrid. Also, an interface pullout formula is proposed for predicting and interpreting pullout test result. The analytical model is based on the assumption that the reinforcement is linear elastic during the pullout test. And then, maximum pullout force, frictional resistance and active length for each of the grid density ratio are predicted based on the interface pullout formula. The predicted results were compared with those of pullout tests, and showed in general good agreements.

  • PDF

Ductility and strength assessment of HSC beams with varying of tensile reinforcement ratios

  • Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ghanbari, Farhad
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.833-848
    • /
    • 2013
  • Nine rectangular-section of High Strength Concrete(HSC) beams were designed and casted based on the American Concrete Institute (ACI) code provisons with varying of tensile reinforcement ratio as (${\rho}_{min}$, $0.2_{{\rho}b}$, $0.3_{{\rho}b}$, $0.4_{{\rho}b}$, $0.5_{{\rho}b}$, $0.75_{{\rho}b}$, $0.85_{{\rho}b}$, $_{{\rho}b}$, $1.2_{{\rho}b}$). Steel and concrete strains and deflections were measured at different points of the beam's length for every incremental load up to failure. The ductility ratios were calculated and the moment-curvature and load-deflection curves were drawn. The results showed that the ductility ratio reduced to less than 2 when the tensile reinforcement ratio increased to $0.5_{{\rho}b}$. Comparison of the theoretical ductility coefficient from CSA94, NZS95 and ACI with the experimental ones shows that the three mentioned codes exhibit conservative values for low reinforced HSC beams. For over-reinforced HSC beams, only the CSA94 provision is more valid. ACI bending provision is 10 percent conservative for assessing of ultimate bending moment in low-reinforced HSC section while its results are valid for over-reinforced HSC sections. The ACI code provision is non-conservative for the modulus of rupture and needs to be reviewed.

기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구 (Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns)

  • 장원석;민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.

Evaluation on mechanical enhancement and fire resistance of carbon nanotube (CNT) reinforced concrete

  • Yu, Zechuan;Lau, Denvid
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.335-349
    • /
    • 2017
  • To cope with the demand on giant and durable buildings, reinforcement of concrete is a practical problem being extensively investigated in the civil engineering field. Among various reinforcing techniques, fiber-reinforced concrete (FRC) has been proven to be an effective approach. In practice, such fibers include steel fibers, polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) carbon fibers and asbestos fibers, with the length scale ranging from centimeters to micrometers. When advancing such technique down to the nanoscale, it is noticed that carbon nanotubes (CNTs) are stronger than other fibers and can provide a better reinforcement to concrete. In the last decade, CNT-reinforced concrete attracts a lot of attentions in research. Despite high cost of CNTs at present, the growing availability of carbon materials might push the usage of CNTs into practice in the near future, making the reinforcement technique of great potential. A review of existing research works may constitute a conclusive reference and facilitate further developments. In reference to the recent experimental works, this paper reports some key evaluations on CNT-reinforced cementitious materials, covering FRC mechanism, CNT dispersion, CNT-cement structures, mechanical properties and fire safety. Emphasis is placed on the interplay between CNTs and calcium silicate hydrate (C-S-H) at the nanoscale. The relationship between the CNTs-cement structures and the mechanical enhancement, especially at a high-temperature condition, is discussed based on molecular dynamics simulations. After concluding remarks, challenges to improve the CNTs reinforcement technique are proposed.

축방향철근의 저주파 피로 거동 (Low Cycle Fatigue Behavior of Longitudinal Reinforcement)

  • 이재훈;고성현
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.263-271
    • /
    • 2010
  • 이 연구는 국내에서 생산되고 있는 철근이 반복하중을 받는 경우의 파괴 특성에 대한 검증을 목적으로 한다. 이 논문은 철근콘크리트 하부구조(파일과 교각)에 배근된 축방향 철근에 대한 저주파 피로 거동을 다루었다. 전체 81개의 철근 실험체에 대하여 변형률 진폭에 따른 반복 축방향 변형률 제어 방식으로 저주파 피로 실험을 수행하였다. 실험 변수는 인장변형률과 압축변형률의 비율, 축방향 철근의 항복강도, 철근지름에 대한 철근길이의 비율, 철근의 크기와 변형률 진폭으로 선택하였다. 이 논문에서 실험 결과에 따른 저주파 피로 거동과 저주파 피로 수명을 분석하였다.

IIHS 풀 오버랩 범퍼 시험 대응 범퍼 백빔 중앙 보강재 설계 (Design of Bumper Backbeam Center Reinforcement Bracket for IIHS Full Overlap Bumper Test)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.105-111
    • /
    • 2015
  • Since 2007, Insurance Institute of Highway Safety(IIHS) has conducted the new bumper test using bumper barrier to estimate the repair cost of impacted vehicle. In this study, for the front body FE model of a medium size passenger car analyzes were carried out to optimize the shape of backbeam center reinforcement bracket. First, overlap effect was examined with changing the overlap magnitude and spot welds were added along the backbeam center line for reducing the section shear deformation. Next, for an overlap model design parameter study was performed for the bracket. Thickness effect was examined and an inner reinforcement was added to the bracket. Also, the lower part of bracket was deleted and additionally the bracket length was extended. The results were discussed in terms of backbeam backward deflection, barrier backstop intrusion and weight. Compared with the current design, the final model showed 44.1% bracket weight reduction with 30.0% decrease of backbeam deflection.

석조문화재의 구조적 보강을 위한 금속보강재 정착길이 연구 (A Study on the Anchorage Length of Metal Stiffeners for the Structural Reinforcement of Stone Cultural Heritages)

  • 김사덕;이동식;김현용
    • 보존과학회지
    • /
    • 제28권2호
    • /
    • pp.141-151
    • /
    • 2012
  • 석조문화재의 훼손된 부재를 재사용하기 위한 보존관리는 1900년대부터 시작되었다고 볼 수 있는데 일제강점기 시대에 무기물인 시멘트를 원료로 사용하면서 부터이다. 1990년대에 접어들면서 건축 재료인 유기질의 에폭시수지가 도입되었고 현재에 이르기까지 석조문화재 전반에 활용되고 있다. 특히 절단된 부재의 구조적 보강에도 충전제를 혼합하여 사용하는 등의 적극적인 보존처리 작업이 진행되었다. 그러나 구조적 보강을 위해 넣은 금속봉의 길이는 보존과학자의 인지적 경험을 바탕으로 설계하였기 때문에 다양한 매입길이와 함께 원부재의 2차적 훼손을 유발할 수 있다. 따라서 본 실험을 통해 원부재의 훼손율을 최소화하면서 최대의 구조적 보강을 하기 위해 유효정착길이를 표준화한 결과 ø8mm 는 60.88mm, ø12mm는 91.32mm, ø16mm는 121.76mm가 적정하였다. 이 외의 구경은 ${\ell}_d=a_tf_y/u{\Sigma}_0$을 이용하여 정착길이를 구한다. 이 때 사용된 금속보강재는 전산형 환봉을 사용하여야 휨, 전단, 압축 등의 재하하중에 대항할 수 있었다.

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.