• 제목/요약/키워드: reinforcement filler

검색결과 72건 처리시간 0.021초

Kaolin충전제(充塡劑) 표면처리(表面處理)에 관(關)한 硏究(연구) (제3보(第3報)) - 첨가(添加)된 충전제充塡劑)와 고무Matrix와의 Interaction 및 충전제(充塡劑) 보강효과(補强效果)의 특성화(特性化) - (Studies on Surface Treatment of Kaolin Filler (Part 3) - Interaction between Surface Modified Filler and Rubber Matrix and Characterization of Reinforcement Effects of Filler -)

  • 권동용;홍성일
    • Elastomers and Composites
    • /
    • 제20권1호
    • /
    • pp.25-39
    • /
    • 1985
  • Elastomer-filler interaction in terms of characterization of filler effects was studied using natural rubber(NR) loaded with kaolin fillers modified with sodium polyphosphate and poly(maleic anhydride), respectively. Kaolins modified with sodium polyphosphate or poly(maleic anhydride) show adhering characteristics by Kraus plot. Reinforcement activity according to Cunneen-Russell method is given by those fillers, in which sodium polyphosphate-treated kaolin presents more favorable results than that treated with poly(maleic anhydride) with respect to adhesion constant, reinforcement extent, elastic constant, and crosslink density. When applied to Blanchard's linkage reinforcement theory, NR vulcanizates loaded with kaolin modified with sodium polyphosphate meet the requirements for both approximate linkage reinforcement(${\psi}'$) of 1.02 to 4.94 and accurate linkage reinforcement($\psi$) of 1.00 to 1.18, representing the values of effective wetting($C_{\psi}$) for 0.001 to 0.029 and intrinsic linkage reinforcement(${\psi}_0$) for 1.015 to 1.124, respectively, whille negligible linkage reinforcement is shown by NR vulcanizates loaded with kaolin treated with poly(maleic anhydride). Dynamic storage modulus(G') given by surface modified kaolins presents more favorable crosslink density rates of $2.260{\times}10^{-5}\;mole/cm^3-min$. for sodium polyphosphate treated kaolin and $1.305{\times}10^{-5}\;mole/cm^3-min$. for poly(maleic anhydride) treated kaolin, respectively, compared to untreated kaolin showing the rate of $1.033{\times}10^{-5}\;mole/cm^3-min$.

  • PDF

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.797-806
    • /
    • 2009
  • The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

왕겨분말 복합재료의 기계적 특성에 미치는 제조인자의 영향 (Effect of Manufacturing Factors on Mechanical Properties of the Rice-husk Powder Composites)

  • 최준용;;윤호철;임재규
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.794-799
    • /
    • 2006
  • In recent years, the use of natural fiber as reinforcement in polymer composites to replace synthetic fiber such as glass fiber is receiving increasing attention. Because of increasing usage according to the high demand, the cost of thermoplastic has increased rapidly over the past decades. We used a thermoplastic polymer(polypropylene) as the matrix and a lignocellulosic material(rice-husk flour) as the reinforcement filler to prepare a particle-reinforced composite to examine the possibility of using lignocellulosic material as reinforcement filler and to determine data of test results for physical, mechanical and morphological properties of the composite according to the reinforcement filler content in respect to thermoplastic polymer, In this study, PLA/PP rice-husk fiber-reinforced thermoplastic composites that made by the hot press molding method according to appropriate manufacturing process was evaluated as mechanical properties.

A Comparison Study on Reinforcement Behaviors of Functional Fillers in Nitrile Rubber Composites

  • Seong, Yoonjae;Lee, Harim;Kim, Seonhong;Yun, Chang Hyun;Park, Changsin;Nah, Changwoon;Lee, Gi-Bbeum
    • Elastomers and Composites
    • /
    • 제55권4호
    • /
    • pp.306-313
    • /
    • 2020
  • To investigate the reinforcing effects of functional fillers in nitrile rubber (NBR) materials, high-structure carbon black (HS45), coated calcium carbonate (C-CaCO3), silica (200MP), and multi-walled carbon nanotubes (MWCNTs) were used as functional filler, and carbon black (SRF) as a common filler were used for oil-resistant rubber. The curing and mechanical properties of HS45-, 200MP-, and MWCNT-filled NBR compounds were improved compared to those of the SRF-filled NBR compound. The reinforcing effect also increased with a decrease in the particle size of the fillers. The C-CaCO3-filled NBR compound exhibited no reinforcing effect with increasing filler concentration because of their large primary particle size (2 ㎛). The reinforcing behavior based on 100% modulus of the functional filler based NBR compounds was compared by using several predictive equation models. The reinforcing behavior of the C-CaCO3-filled NBR compound was in accordance with the Smallwood-Einstein equation whereas the 200MP- and MWCNT-filled NBR compounds fitted well with the modified Guth-Gold (m-Guth-Gold) equation. The SRF- and HS45-filled NBR compounds exhibited reinforcing behavior in accordance with the Guth-Gold and m-Guth-Gold equations, respectively, at a low filler content. However, the values of reinforcement parameter (100Mf/100Mu) of the SRF- and HS45-filled NBR compounds were higher than those determined by the predictive equation model at a high filler content. Because the chains of SRF composed of spherical filler particles are similarly changed to rod-like filler particles embedded in a rubber matrix and the reinforcement parameter rapidly increased with a high content of HS45, the higher-structured filler. The reinforcing effectiveness of the functional fillers was numerically evaluated on the basis of the effectiveness index (��SRF/��f) determined by the ratio of the volume fraction of the functional filler (��f) to that of the SRF filler (��SRF) at three unit of reinforcing parameter (100Mf/100Mu). On the basis of their effectiveness index, MWCNT-, 200MP-, and HS45-filled compounds showed higher reinforcing effectiveness of 420%, 70%, and 20% than that of SRF-filled compound, respectively whereas C-CaCO3-filled compound exhibited lower reinforcing effectiveness of -50% than that of SRF-filled compound.

합성(合成)고무 보강제(補强劑) Silica의 화학처리(化學處理)에 관(關)한 연구(硏究) (II) -MDI 처리(處理) Silica의 LBR처리(處理)- (Studies on the Chemical Treatment of Silica for Synthetic Rubber Reinforcement (II) -Silica Treatment by LBR-MDI-)

  • 진제용;김홍선;최세영
    • Elastomers and Composites
    • /
    • 제30권3호
    • /
    • pp.207-217
    • /
    • 1995
  • The reinforcement of Inorganic filler silica treated with LBR-MDI In SBR vulcanizates were Investigated. The inorganic filler silica treated with MDI on unmodified surface and that of silica treated by MDI was retreated with LBR. The charateristics of vulcanization, physical properties, surface properites and dynamic properties were investigated after mixing those silica with SBR and unmodified silica with SBR. Rheometric studies of the vulcanization showed that S-series has fast scorch $time(t_{10})$ and an optimum cure $time(t_{90})$ in the SBR compounds. And it was turned out that SBR vulcanizates compounded with LBR treated silica was better than any other componnds in hardness, tensile strenght, 100 300% modula and elongation. We could confirm that urea bonding is formed from IR spectrum. We concluded that L-series shows the best reinforcement effect in SBR vulcanizates.

  • PDF

Back Filler의 보강에 따른 STS VOD 래들의 열응력 해석 (Thermal Stress Analysis of STS VOD Ladle according to the reinforcement of back filler)

  • 이순욱;함경춘;배성인;송정일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.310-315
    • /
    • 2000
  • We analyzed thermal stress of the STS VOD ladle by the variation of material property of refractory, and determined the location of back filler using FE analysis. Thermal distribution of refractory of ladle between hot face and back face were decreased by the increasing the thermal conductivity, and thermal stress of refractory were decreased about 2 to 4 times with the decreasing the young's modulus coefficients. Back filler, which is constructed to absorb the thermal expansion of dolomite refractory, has relatively low thermal conductivity. Inner side of refractory of ladle maintained high temperature, but temperature of outer side of ladle decreased low. Consequently, inner expansion and outer contraction were appeared. and thermal stress were increased, so thermal stress by the construction of back filler were increased.

  • PDF

폐 FRP/Urethane Foam 충진 혼성복합재의 제조 및 기계적 물성에 관한 연구 (A Study on the Preparation and Mechanical Properties of Hybrid Composites Reinforced Waste FRP and Urethane Foam)

  • 황택성;신경섭;박진원
    • 폴리머
    • /
    • 제24권4호
    • /
    • pp.564-570
    • /
    • 2000
  • 욕조 생산시 발생하는 폐 FRP와 냉장고 등 가전품과 폐단열재로부터 발생하는 폐우레탄폼을 흡음 및 경량판재로 재활용하기 위하여 불포화 폴리에스테르 매트릭스 수지에 보강하여 복합재를 제조하였다. 또한 충진제의 함량의 변화가 복합재의 기계적 물성에 미치는 영향과 기지와 보강재간의 계면현상을 관찰하였다. 충진제의 함량이 70 wt%인 복합재의 인장강도는 82.34 MPa로 가장 우수하였으며, 인장탄성율은 보강재의 함량이 증가함에 따라 감소하였다. 또한 굴곡강도와 굴곡탄성율은 폐FRP의 함량이 70 wt%충진된 복합재가 가장 우수하였으며, 그 값은 각각 72.5, 958.4 MPa이었다. SEM 관찰 결과 70 wt% 충진된 충진제 매트릭스 수지의 계면에서 pull out 현상이 확인되지 않았으며 균열도 발생하지 않았고, 매트릭스 수지내에 충진된 폐 FRP/우레탄폼 충진제가 잘 분산되어 있음을 확인할 수 있었다.

  • PDF

Field experimental study for layered compactness of subgrade based on dimensional analysis

  • Han, Dandan;Zhou, Zhijun;Lei, Jiangtao;Lin, Minguo;Zhan, Haochen
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.583-598
    • /
    • 2022
  • The Compaction effect is important for evaluating the subgrade construction. However, there is little research exploring the compaction quality of deep soil using hydraulic compaction. According to reinforcement effect analysis, dimensional analysis is adopted in this work to analyze subgrade compactness within the effective reinforcement depth, and a prediction model is obtained. A hydraulic compactor is then employed to carry out an in-situ reinforcement test on gravel soil subgrade, and the subgrade parameters before and after reinforcement are analyzed. Results show that a reinforcement difference exists inside the subgrade, and the effective reinforcement depth is defined as increasing compactness to 90% in the depth direction. Layered compactness within the effective reinforcement depth is expressed by parameters including the drop distance of the rammer, peak acceleration, tamping times, subgrade settlement, and properties of rammer and filler. Finally, a field test is conducted to verify the results.

Mechanical Properties of Corn Husk Flour/PP Bio-composites

  • Jagadeesh, Dani.;Sudhakara, P.;Lee, D.W.;Kim, H.S.;Kim, B.S.;Song, J.I.
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.213-217
    • /
    • 2013
  • The focus in the present work is to study the agro-waste corn husk bio-filler as reinforcement for polypropylene. These materials have been created by extrusion and injection molding. The effect of filler content by 10, 20, 30 and 40 wt. % and mesh sizes of 50~100, 100 and 300 on the mechanical properties was studied. For the un-notched specimens, the results of flexural strength showed a declining trend with increase the filler loading and the results of impact strength showed an increasing trend with increase the mesh size. In contrast, enhanced flexural modulus was observed with increasing filler loading and size.

SBR에 대한 Silane Coupling Agent 처리한 Kaolinite의 보강효과에 관한 연구 (Effect of Kaolinite Treated with Silane Coupling Agent on the Reinforcement of SBR)

  • 김기주;김종석;안병국;최형진;장영재
    • Elastomers and Composites
    • /
    • 제25권4호
    • /
    • pp.280-290
    • /
    • 1990
  • The effect of surface treatment of kaolinite with silane coupling agent on the reinforcement of SBR was investigated. The possibility of the practical use of kaolinite as an organic filler was also scrutinized and it was found that the reinforcement of SBR was improved by modifying surface of the cheap inactive inorganic filler with organic silane coupling agents. 3-Chloropropyltrimethoxysilane(C-series), 3-mercaptopropyltrimethoxysilane(M-series) and 3-aminopropyltriethoxysilane(A-series) were used as coupling agents. To test the material properties of vulcanized and unvulcanized SBR, Mooney viscosity, modulus, elongation and fractured surface measurements by SEM were carried out by changing the amount of silane coupling agents. Torqe of the unvulcanized SBR following the measurement of the degree of vulcanization was to be increased as the amount of silane was increasing, and Mooney viscosity of M-series and A-series was also increased.

  • PDF