In this paper, 2 kinds of models about bike frame are simulated with static structural analysis. A bike frame with diamond type is compared with another model that Down tube is eliminated from original diamond frame. About both types of models, Property of a material and conditions of restriction & load are the same. This study shows reinforcement effects of a partial frame by adding down tube and impacts generated by applying a load at the frame such as weak points & high stress parts as well as expected deformation. The structural result of this study indicates that the equivalent stress or total deformation decreases by 57.1% or 36.4%, respectively. Also stress concentration sites are leg connecting parts, front/rear wheels fixed region and Max deformation is generated from Seat tube. In conclusion, A Down tube is highly efficient as reinforcement than frame without non down tube. Furthermore, The safety rises in case of reducing top tube thickness and increasing a reinforcement at leg connecting parts or concentration regions.
Journal of the Korea institute for structural maintenance and inspection
/
v.2
no.3
/
pp.188-193
/
1998
An experimental study was performed on the pull-out behavior of 90-deg standard hooks from exterior beam-column connections. The effects of lateral confinement and fiber reinforcement of joint area were investigated. It was concluded ; (1) Substitution of the transverse column (confining) reinforcement with steel fibers at the joint region effectively reduces the extent of cracking in exterior joints caused by pull-out of hooked bars; and (2) The strength and ductility of hooked bars under pull-out forces are positively influenced by substituting the conventional confining reinforcement of exterior joints with steel fibers. Application of steel fibers to exterior joints seems to be an effective technique for improving the anchorage conditions of hooked bars, and also for reducing the congestion of reinforcement in exterior beam-column connections.
Autonomous radiation source detection has long been studied for radiation emergencies. Compared to conventional data-driven or path planning methods, deep reinforcement learning shows a strong capacity in source detection while still lacking the generalized ability to the geometry in unknown environments. In this work, the detection task is decomposed into two subtasks: exploration and localization. A hierarchical control policy (HC) is proposed to perform the subtasks at different stages. The low-level controller learns how to execute the individual subtasks by deep reinforcement learning, and the high-level controller determines which subtasks should be executed at the current stage. In experimental tests under different geometrical conditions, HC achieves the best performance among the autonomous decision policies. The robustness and generalized ability of the hierarchy have been demonstrated.
In the present paper, the influences of the variation of exponent of volume fraction of carbon nanotubes (CNTs) on the natural frequencies (NFs) of the carbon nanotube-reinforced composite (CNTRC) beams under four different boundary conditions (BCs) are investigated. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned and dispersed in a polymeric matrix with various reinforcing patterns, according to the variation of exponent of volume fraction of CNTs for functionally graded (FG) reinforcements. Besides, uniform distribution (UD) of reinforcement is also considered to analyze the influence of the non-linear (NL) variation of the reinforcement of CNTs. Using Hamilton's principle and third-order shear deformation theory (TSDT), the equations of motion of the CNTRC beam are derived. Under four different BCs, the resulting equations are solved analytically. To verify the present formulation, comparison investigations are conducted. To examine the impacts of several factors on the NFs of the CNTRC beams, numerical examples and some benchmark results are presented.
A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.
With the increasing number of underground projects, the problem of rock-water coupling catastrophe has increasingly become the focus of safety. Grouting reinforcement is gradually applied in subway, tunnel, bridge reinforcement, coal mine floor and other construction projects. At present, cement-based grouting materials are easy to shrink and have low strength after solidification. In order to overcome the special problems of high water pressure and high in-situ stress in deep part and improve the reinforcement effect. In view of the mining conditions of deep surrounding rock, a new type of cement-based reinforcement material was developed. We analyses the principle and main indexes of floor strengthening, and tests and optimizes the indexes and proportions of the two materials through laboratory tests. Then, observes and compares the microstructures of the optimized floor strengthening materials with those of the traditional strengthening materials through scanning electron microscopy. The test results show that 42.5 Portland cement-based grouting reinforcement material has the advantages of slight expansion, anti-dry-shrinkage, high compressive strength and high density when the water-cement ratio is 0.4, the content of bentonite is 4%, and the content of Nano Silica is 2.5%. The reinforcement effect is better than other traditional grouting reinforcement materials.
Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
Proceedings of the Korean Geotechical Society Conference
/
2009.09a
/
pp.1118-1125
/
2009
This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing Bearing Capacity Evaluation method for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 21 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. According to result of tests, Terzaghi's bearing capacity method is adequate to calculate bearing capacity in non-stiff material(geotextile, geogrid). But, It can't adequate to stiff material(bamboo net). So, New bearing capacity method suggest surface reinforcement method of very soft ground which Terzaghi's bearing capacity method modify for effect of stiffness.
Journal of information and communication convergence engineering
/
v.20
no.1
/
pp.22-30
/
2022
The reinforcement learning algorithm has proven its potential in solving sequential decision-making problems under uncertainties, such as finding paths to route data packets in wireless sensor networks. With reinforcement learning, the computation of the optimum path requires careful definition of the so-called reward function, which is defined as a linear function that aggregates multiple objective functions into a single objective to compute a numerical value (reward) to be maximized. In a typical defined linear reward function, the multiple objectives to be optimized are integrated in the form of a weighted sum with fixed weighting factors for all learning agents. This study proposes a reinforcement learning -based routing protocol for wireless sensor network, where different learning agents prioritize different objective goals by assigning weighting factors to the aggregated objectives of the reward function. We assign appropriate weighting factors to the objectives in the reward function of a sensor node according to its hop-count distance to the sink node. We expect this approach to enhance the effectiveness of multi-objective reinforcement learning for wireless sensor networks with a balanced trade-off among competing parameters. Furthermore, we propose SDN (Software Defined Networks) architecture with multiple controllers for constant network monitoring to allow learning agents to adapt according to the dynamics of the network conditions. Simulation results show that our proposed scheme enhances the performance of wireless sensor network under varied conditions, such as the node density and traffic intensity, with a good trade-off among competing performance metrics.
Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.
This study examined the relative effects of positive and negative reinforcement on customer service behaviors. In addition, we examined whether the intervention would lead to response generalization on non-target behaviors. Five employees at three different convenient stores participated and ABC/ACB within-subject design was adopted. For the three participants, followed by the baseline(A), the positive reinforcement was first introduced(B) and the negative reinforcement(C) was introduced for the next phase. For the remaining two participants, the negative reinforcement(C) was first introduced after baseline(A) and the positive reinforcement (B) was introduced. Results showed a greater improvement in target behaviors under the positive reinforcement condition than that of the negative reinforcement condition. In addition, both reinforcement condition cause response generalization on non-targeted service behaviors, however, the comparable effects was found between two reinforcement conditions. Post-interview indicated that participants experienced positive emotions under positive reinforcement condition and negative emotions under negative reinforcement condition. These results suggest that the he techniques using positive reinforcement can be more effective and efficient to improve the work performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.