• Title/Summary/Keyword: reinforcement bars

Search Result 509, Processing Time 0.027 seconds

Evaluation of Ductility for Bridge Piers Retrofitted by Stainless Steel Wire Mesh (스테인레스 스틸 와이어 메쉬 보강에 따른 교각의 연성능력 평가)

  • 김성훈;김대곤;이규남;김선호;김석희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.879-884
    • /
    • 2002
  • The objective of this study is to investigate the seismic capacity of the non-seismically detailed RC bridge piers before and after applying a seismic retrofitting method using stainless steel wire mesh. Total nine circular section RC piers were constructed. Different lap splice longitudinal reinforcement details were adapted for four specimens and various types of stainless steel wire mesh were applied for the remaining five specimens. Harmonic cyclic lateral load was applied on each specimen under a constant axial load. The test results indicated that the existing circular piers have low seismic capacity while the stainless steel wire mesh retrofitting method improves the seismic capacity considerably. In addition, test results revealed that the circular section piers could have a considerable amount of ductility if longitudinal bars are not lap-spliced in potential plastic hinge zone. Based on this experimental study it could be concluded that the seismic performance, that is ductility and energy absorption capacity, of the non-seismically detailed RC bridge piers would be increased by applying the stainless steel wire mesh seismic retrofitting method.

  • PDF

Finite element analysis of longitudinal reinforcement beams with UHPFC under torsion

  • Mohammed, Thaer Jasim;Bakar, B.H. Abu;Bunnori, N. Muhamad;Ibraheem, Omer Farouk
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • The proposed techniques to strengthen concrete members such as steel plates, polymers or concrete have important deficiencies in adherence and durability. The use of UHPFC plates can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen RC beams under torsion is investigated. Four specimens of concrete beams reinforced with longitudinal bars only were tested under pure torsion. One of the beams was considered as the baseline specimen, while the others were strengthened by ultra-high-performance fiber concrete (UHPFC) on two, three, and four sides. Finite element analysis was conducted in tandem with experimental work. Results showed that UHPFC enhances the strength, ductility, and toughness of concrete beams under torsional load, and that finite element analysis is in good agreement with the experimental data.

Development and Durability Characteristics of FRP Reinforcing Bar for Concrete Structures (콘크리트 보강용 FRP 리바의 개발 및 내구 특성)

  • Won, Jong-Pil;Park, Chan-Gi;Yoon, Jong-Han;Hwang, Kum-Sik;Cho, Yong-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.371-374
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. In this study, long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP- and GFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution, acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

  • PDF

A Case Study on Construction and Design of the Wedge Type Removable Soil Nailing System (쐐기형 제거식 쏘일 네일링 시스템의 설계 및 시공사례)

  • Han, Yeon-Jin;Park, Si-Sam;Kwon, Hyuk-Jun;Kim, Hong-Taek;Park, Ju-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.240-247
    • /
    • 2010
  • The soil nailing system is becoming common as reinforcement method of slope face in soil. It has application to obtain slope stability method and scaffolding system. It has some troubles when the soil nailing system is applied to the downtown because it could be invaded someone's private area. Thus, in this paper, wedge type removable soil nailing system which can easily remove deformed bar in final excavation step is developed. Field pull-out test is performed to evaluate deformed bars removal and pullout resistance characteristics. According to this result, application of Wedge Type Removable Soil Nailing System is performed.

  • PDF

Seismic Performance Evaluation of Confined Masonry Wall System Considering of Shear-Depth Ratio (전단스팬비 영향을 고려한 RC구속조적조 벽체의 내진성능평가)

  • Kim Kyong-Tae;Seo Soo-Yeon;Yoon Seung Joe;Sung Ki Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.1-4
    • /
    • 2005
  • To investigate the effective seismic strengthening methods for masonry walls in developing countries, a total of four confined masonry (CM) walls were constructed and tested. In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns for the improvement of the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. The heights of inflection point considered were 0.67 and 1.11 times the height of the wall measured from the top of foundation beam. The constant vertical axial stress applied was 0 MPa. During the test, cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations was measured. From test data, it was showed that the seismic performance of confined concrete block masonry walls was significantly affected by test variables.

  • PDF

Strut-And-Tie Model for Headed Bar Anchored in Exterior Beam-Column Joint with Transverse Reinforcement (전단보강근이 배근된 외부 보기둥 접합부에 정착된 헤드 철근의 스트럿-타이 모델)

  • Chun, Sung-Chul;Hong, Sung-Gul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.454-457
    • /
    • 2006
  • This study presents a strut-and-tie model for the development of headed bars in an exterior beam-column joint with transverse reinforcements. The tensile force of a headed bar is considered to be developed by head bearing together with bond along a bonded length as a partial embedment length. The model requires construction of struts with biaxially compressed nodal zones for head bearing and fan-shaped stress fields against neighboring nodal zones for bond stresses along the bonded length. Due to the existence of transverse reinforcements, the fan-shaped stress fields are divided into direct and indirect fan-shaped stress fields. A required development length and head size of a headed bar can be optimally designed by adjusting a proportion between a bond contribution and bearing contribution.

  • PDF

Characteristics of FRP-Concrete Composite Decks under Negative Flexure (FRP-콘크리트 합성 바닥판의 부모멘트부 거동 특성)

  • Kim, Sung-Tae;Cho, Keun-Hee;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Byung-Suk;Shin, Yung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.86-89
    • /
    • 2006
  • The flexural performance of FRP-concrete composite deck in the connection between decks is evaluated. FRP-concrete composite deck, an innovative system is composed of concrete in the top and FRP panel in the bottom. The experiments are carried out on specimens with different details, such as FRP module and reinforcement of FRP re-bars. As a result, we verify that the transverse connections between our FRP-concrete composite decks with presented details secure enough safety and serviceability.

  • PDF

Evaluation of Flexural Strength of FRP-Concrete Composite Decks According to Details of Their Connecting Parts above Girders (연결부 상세에 따른 FRP-콘크리트 합성 바닥판의 거더 위 부모멘트부 휨강도 평가)

  • Park, Sung-Yong;Cho, Keun-Hee;Kim, Sung-Tae;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.21-24
    • /
    • 2008
  • Tests were performed to obtain the flexural capacity of the innovative FRP-Concrete Composite Deck (FCCD) above girders. Test parameters were details of connection parts between FCCD and girder, such as continuity of FRP module, reinforcing ratio of FRP re-bars, and existence of shear connecting plate. As a test result, we found flexural strength of FCCD in the negative zone increases when FRP module is continuous, and reinforcement is increased, and shear connecting plate exists. And the flexural strength of all specimens give enough safety compared to the value needed in Korean highway bridge design code.

  • PDF

Ductility Assesment of Damaged RC Bridge Piers w with Lap-Spliced Bars

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.453-456
    • /
    • 2003
  • This research is to evaluate the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal reinforcement steels in the plastic hinge region, and to develop the enhancement scheme of their seismic capacity. Six circular columns of 0.6m diameter and 1.5m height were made with two confinement steel ratios. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under an axial load, P=$0.1f_{ck}A_{g}$, and residual seismic performance of damaged columns was evaluated. Test results show that RC bridge piers with lap-spliced longitudinal steels behaved with minor damage even under artificial earthquakes with 0.22g PGA, but failed at low ductility subjected to the subsequent quasi-static load test. This failure was due to the debonding of the lap splice. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region showed significant improvement both in flexural strength and displacement ductility.

  • PDF

Investigation of the behavior of reinforced concrete hollow-core thick slabs

  • Al-Azzawi, Adel A.;Abed, Sadeq A.
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.567-577
    • /
    • 2017
  • This study presents investigation of the behavior of moderately thick reinforced concrete slabs having hollow cores with different parameters. The experimental part of this investigation includes testing eight specimens of solid and hollow-core slab models having (2.05 m) length, (0.6 m) width and (25 cm) thickness under two monotonic line loads. Load versus deflection was recorded during test at mid span and under load. Numerically, the finite element method is used to study the behavior of these reinforced concrete slabs by using ANSYS computer program. The specimens of slab models are modeled by using (SOLID65) element to represent concrete slabs and (LINK180) element to represent the steel bars as discrete axial members between concrete nodes. The finite element analysis has showed good agreement with the experimental results with difference of (4.71%-8.68%) in ultimate loads. A parametric study have been carried out by using ANSYS program to investigate the effects of concrete compressive strength, size and shape of core, type of applied load and effect of removing top steel reinforcement.