• 제목/요약/키워드: reinforcement CNTs composite

검색결과 33건 처리시간 0.026초

High Strength Electrospun Nanofiber Mats via CNT Reinforcement: A Review

  • Pant, Bishweshwar;Park, Mira;Park, Soo-Jin;Kim, Hak Yong
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.186-193
    • /
    • 2016
  • The development of electrospun nanofibers with improved mechanical properties is of great scientific and technological interest because of their wide-range of applications. Reinforcement of carbon nanotubes (CNTs) into the polymer matrix is considered as a promising strategy for substantially enhancing the mechanical properties of resulting CNTs/polymer composite mats on account of extraordinary mechanical properties of CNTs such as ultra-high Young's modulus and tensile strengths. This paper summarizes the recent developments on electrospun CNTs/polymer composite mats with an emphasis on their mechanical properties.

Preparation, Properties and Application of Polyamide/Carbon Nanotube Nanocomposites

  • Chen, Peng;Kim, Hun-Sik;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • 제17권4호
    • /
    • pp.207-217
    • /
    • 2009
  • The discovery of carbon nanotubes(CNTs) has opened up exciting opportunities for the development of novel materials with desirable properties. The superior mechanical properties and excellent electrical conductivity make CNTs a good filler material for composite reinforcement. However, the dispersal of CNTs in a polymer solution or melt is difficult due to their tendency to agglomerate. Many attempts have been made to fully utilize CNTs for the reinforcement of polymeric media. Therefore, different types of polymer/CNTs nanocomposites have been synthesized and investigated. This paper reviews the current progress in the preparation, properties and application of polyamide/CNTs(nylon/CNTs) nanocomposites. The effectiveness of different processing methods has increased the dispersive properties of CNTs and the amelioration of their poor interfacial bonding. Moreover, the mechanical properties are significantly enhanced even with a small amount of CNTs. This paper also discusses how reinforcement with CNTs improves the electrical thermal and optical properties of nylon/CNTs nanocomposites.

The influence of non-linear carbon nanotube reinforcement on the natural frequencies of composite beams

  • Mehmet Avcar;Lazreg Hadji;Omer Civalek
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.421-433
    • /
    • 2023
  • In the present paper, the influences of the variation of exponent of volume fraction of carbon nanotubes (CNTs) on the natural frequencies (NFs) of the carbon nanotube-reinforced composite (CNTRC) beams under four different boundary conditions (BCs) are investigated. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned and dispersed in a polymeric matrix with various reinforcing patterns, according to the variation of exponent of volume fraction of CNTs for functionally graded (FG) reinforcements. Besides, uniform distribution (UD) of reinforcement is also considered to analyze the influence of the non-linear (NL) variation of the reinforcement of CNTs. Using Hamilton's principle and third-order shear deformation theory (TSDT), the equations of motion of the CNTRC beam are derived. Under four different BCs, the resulting equations are solved analytically. To verify the present formulation, comparison investigations are conducted. To examine the impacts of several factors on the NFs of the CNTRC beams, numerical examples and some benchmark results are presented.

분자수준 혼합공정을 이용한 탄소나노튜브/Cu 나노복합재료의 제조 및 특성평가 (Fabrication and Characterization of Carbon Nanotube/Cu Nanocomposites by Molecular Level Mixing Process)

  • 김경태;차승일;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.261-264
    • /
    • 2005
  • Since the first discovery of carbon nanotube (CNT) in 1991, a window to new technological areas has been opened. One of the emerging applications of CNTs is the reinforcement of composite materials to overcome the performance limits of conventional materials. However, because of the difficulties in distributing CNTs homogeneously in metal or ceramic matrix by means of traditional composite processes, it has been doubted whether CNTs can really reinforce metals or ceramics. In this study, CNT reinforced Cu matrix nanocomposite is fabricated by a novel fabrication process named molecular level mixing process. This process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows to be 3 times higher strength and 2 times higher Young’s modulus than Cu matrix. This extra-ordinary strengthening effect of carbon nanotubes in metal is higher than that of any other reinforcement ever used for metal matrix composites.

  • PDF

Tribological performance of UHMWPE reinforced with carbon nanotubes in bovine serum

  • Zoo, Yeong-Seok;Lim, Dae-Soon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.363-364
    • /
    • 2002
  • Although the factors that cause the failure of orthopedic implants were not clearly determined, it was reported that the shapes of wear debris affect the tribological behavior of artificial implant. Many researches were conducted to examine the wear mechanism by debris but the role of debris shape in inflammatory reaction remains unclear. To observe the debris shape by addition of reinforcement, carbon nanotubes ( CNTs ) were added to ultra high molecular weight polyethylene ( UHMWPE ) to investigate the reinforcement effect of CNTs. CNTs which have a diameter of about 10-50 nm, while their length is about 3-5 nm were produced by the catalytic decomposition of the acetylene gas using a tube furnace. Plate on disc type wear test were performed to evaluate the tribological performance of UHMWPE composites reinforced with CNTs in lubricating condition ( bovine serum ). The wear losses of CNT added UHMWPE in bovine serum were significantly reduced. Worn surface and wear debris of UHMWPE with CNTs and without CNTs were compared to investigate the reinforcement effect of CNT on tribological behavior.

  • PDF

Fabrication Process and Properties of Carbon Nanotube/Cu Nanocomposites

  • Cha, Seung-I.;Kim, Kyung-T.;Mo, Chan-B.;Hong, Soon-H.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.366-367
    • /
    • 2006
  • Carbon nanotubes (CNTs) have attracted remarkable attention as reinforcement for composites owing to their outstanding mechanical properties. The CNT/Cu nanocomposite is fabricated by a novel fabrication process named molecular level process. The novel process for fabricating CNT/Cu composite powders involves suspending CNTs in a solvent by surface functionalization, mixing Cu ions with CNT suspension, drying, calcination and reduction. The molecular level process produces CNT/Cu composite powders whereby the CNTs are homogeneously implanted within Cu powders. The mechanical properties of CNT/Cu nanocomposite, consolidated by spark plasma sintering of CNT/Cu composite powders, shows about 3 times higher strength and 2 times higher Young's modulus than those of Cu matrix.

  • PDF

Effects of Graphenes/CNTs Co-reinforcement on Electrical and Mechanical Properties of HDPE Matrix Nanocomposites

  • Kim, Byung-Joo;Byun, Joon-Hyung;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2261-2264
    • /
    • 2010
  • In this work, mechanical and electrical properties of graphenes (GP)/carbon nanotubes (CNTs) co-reinforced high density polyethylene (HDPE) matrix composites were studied. The microstructure, morphologies, and electric properties of the composites were evaluated by XRD, TEM, and 4-probe methods, respectively. It was found that the electric resistivity of 0.5 wt %-GP/HDPE was immeasurable, and 2.0 wt %-CNTs/HDPE showed high resistivity ($6.02{\times}10^4{\Omega}{\cdot}cm$). Meanwhile, GP (0.5 wt %)/CNTs (2.0 wt %)/HDPE showed excellent low resistivity ($3.1{\times}10^2{\Omega}{\cdot}cm$). This result indicates that the co-reinforcement systems can dramatically decrease electric resistivity of the carbon/polymer nanocomposites.

Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory

  • Hao-Xuan Ding;Hai-Bo Liu;Gui-Lin She;Fei Wu
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.207-215
    • /
    • 2023
  • This paper investigates wave propagation in functionally graded carbon nano-reinforced composite (FG-CNTRC) plates under the influence of temperature based on Reddy' plate model. The material properties of Carbon Nanotubes (CNTs) are size-dependent, and the volume fraction of CNTs varies only along the thickness direction of the plate for different CNTs reinforcement modes. In addition, the material properties of CNTs can vary for different temperature parameters. By solving the eigenvalue problem, analytical dispersion relations can be derived for CNTRC plates. The partial differential equations for the system are derived from Lagrange's principle and higher order shear deformation theory is used to obtain the wave equations for the CNTRC plate. Numerical analyses show that the wave propagation properties in the CNTRC plate are related to the volume fraction parameters of the CNTRC plate and the distribution pattern of the CNTs in the polymer matrix. The effects of different volume fractions of CNTs and the distribution pattern of carbon nanotubes along the cross section (UD-O-X plate) are discussed in detail.

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M.;Akbas, S.D.
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.353-363
    • /
    • 2022
  • This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

Vibration analysis of functionally graded nanocomposite plate moving in two directions

  • Arani, Ali Ghorbanpour;Haghparast, Elham;Zarei, Hassan BabaAkbar
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.529-541
    • /
    • 2017
  • In the present study, vibration analysis of functionally graded carbon nanotube reinforced composite (FGCNTRC) plate moving in two directions is investigated. Various types of shear deformation theories are utilized to obtain more accurate and simplest theory. Single-walled carbon nanotubes (SWCNTs) are selected as a reinforcement of composite face sheets inside Poly methyl methacrylate (PMMA) matrix. Moreover, different kinds of distributions of CNTs are considered. Based on extended rule of mixture, the structural properties of composite face sheets are considered. Motion equations are obtained by Hamilton's principle and solved analytically. Influences of various parameters such as moving speed in x and y directions, volume fraction and distribution of CNTs, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of composite plate on the vibration characteristics of moving system are discussed in details. The results indicated that thenatural frequency or stability of FGCNTRC plate is strongly dependent on axially moving speed. Moreover, a better configuration of the nanotube embedded in plate can be used to increase the critical speed, as a result, the stability is improved. The results of this investigation can be used in design and manufacturing of marine vessels and aircrafts.