• Title/Summary/Keyword: reinforced structures

Search Result 3,738, Processing Time 0.026 seconds

A 3D co-rotational beam element for steel and RC framed structures

  • Long, Xu;Tan, Kang Hai;Lee, Chi King
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.587-613
    • /
    • 2013
  • A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is performed, considering both normal and shear stresses. In addition, the derivations associated with material nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed structures with satisfactory accuracy and efficiency.

Energy based procedure to obtain target displacement of reinforced concrete structures

  • Massumi, A.;Monavari, B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • Performance-based seismic design allows a structure to develop inelastic response during earthquakes. This modern seismic design requires more clearly defined levels of inelastic response. The ultimate deformation of a structure without total collapse (target displacement) is used to obtain the inelastic deformation capacity (inelastic performance). The inelastic performance of a structure indicates its performance under excitation. In this study, a new energy-based method to obtain the target displacement for reinforced concrete frames under cyclic loading is proposed. Concrete structures were analyzed using nonlinear static (pushover) analysis and cyclic loading. Failure of structures under cyclic loading was controlled and the new method was tested to obtain target displacement. In this method, the capacity energy absorption of the structures for both pushover and cyclic analyses were considered to be equal. The results were compared with FEMA-356, which confirmed the accuracy of the proposed method.

On the wind and earthquake response of reinforced concrete chimneys

  • Turkeli, Erdem;Karaca, Zeki;Ozturk, Hasan Tahsin
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.559-567
    • /
    • 2017
  • Slender structures like reinforced concrete (RC) chimneys are severely damaged or collapsed during severe wind storms or strong ground motions all over the world. Today, with the improvement in technology and industry, most factories need these slender structures with increasing height and decreasing in shell thickness causing vulnerable to winds and earthquakes. Main objectives in this study are to make structural wind and earthquake analysis of RC chimneys by using a well-known international standard CICIND 2001 and real recorded time history accelerations and to clarify weak points of these tall and slender structures against these severe natural actions. Findings of this study show that maximum tensile stress and shear stress approximately increase 103.90% and 312.77% over or near the openings on the body of the RC chimneys that cause brittle failure around this region of openings.

Performance-Based Seismic Design of Reinforced Concrete Building Structures Using Inelastic Displacements Criteria

  • Kabeyaswa, Toshimi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.61-71
    • /
    • 1998
  • A performance-based seismic design method for reinforced concrete building structures being developed in Japan is outlined. Technical and scientific background of the performance-based design philosophy as well as recently developed seismic design guidelines are is presented, in which maximum displacement response to design earthquake motion is used as the limit-state design criteria. A method of estimating dynamic response displacement of the structures based on static nonlinear analysis is described. A theoretical estimation of nonlinear dynamic response considering the characteristics of energy input to the system is described in detail, which may be used as the standard method in the new performance-based code. A desing philosophy not only satisfying the criteria but also evaluating seismic capacity of the structures is also introduced.

  • PDF

Identification of reinforced concrete beam-like structures subjected to distributed damage from experimental static measurements

  • Lakshmanan, N.;Raghuprasad, B.K.;Muthumani, K.;Gopalakrishnan, N.;Basu, D.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.37-60
    • /
    • 2008
  • Structural health monitoring of existing infrastructure is currently an important field of research, where elaborate experimental programs and advanced analytical methods are used in identifying the current state of health of critical and important structures. The paper outlines two methods of system identification of beam-like reinforced concrete structures representing bridges, through static measurements, in a distributed damage scenario. The first one is similar to the stiffness method, re-cast and the second one to flexibility method. A least square error (LSE) based solution method is used for the estimation of flexural rigidities and damages of simply supported, cantilever and propped cantilever beam from the measured deformation values. The performance of both methods in the presence of measurement errors is demonstrated. An experiment on an un-symmetrically damaged simply supported reinforced concrete beam is used to validate the developed method. A method for damage prognosis is demonstrated using a generalized, indeterminate, propped cantilever beam.

A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for

  • Walker, M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.253-262
    • /
    • 2007
  • A methodology to design symmetrically laminated fibre-reinforced structures under transverse loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and boundary conditions are optimally designed and compared.

Design optimization of reinforced concrete structures

  • Guerra, Andres;Kiousis, Panos D.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.313-334
    • /
    • 2006
  • A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multistory RC structures incorporates optimal stiffness correlation among all structural members and results in cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material and labor costs for forming and placing concrete and steel are incorporated as a function of member size using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of MATLAB's (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of RC structures. A number of examples are presented that demonstrate the ability of this formulation to achieve optimal designs.

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

Parametric study of shear strength of CFRP strengthened end-web panels

  • Shalaby, Haitham A.;Hassan, Maha M.;Safar, Sherif S.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • Strengthening of civil infrastructure with advanced composites have recently become one of the most popular methods. The use of Fiber Reinforced Polymer (FRP) strips plates and fabric for strengthening of reinforced concrete structures has well established design guidelines and standards. Research on the application of FRP composites to steel structures compared to concrete structures is limited, especially for shear strengthening applications. Whereas, there is a need for cost-effective system that could be used to strengthen steel high-way bridge girders to cope with losses due to corrosion in addition to continuous demands for increasing traffic loads. In this study, a parametric finite element study is performed to investigate the effect of applying thick CFRP strips diagonally on webs of plate girders on the shear strength of end-web panels. The study focuses on illustrating the effect of several geometric parameters on nominal shear strength. Hence, a formula is developed to determine the enhancement of shear strength gained upon the application of CFRP strips.